A química sustentável

A química verde é uma filosofia que visa reduzir o uso de produtos químicos tóxicos e a produção de resíduos em processos industriais. Ela espalhou sua missão de reduzir o impacto da indústria no meio ambiente em todo o setor industrial, governo e salas de aula.

Filosofia recentemente introduzida na indústria química, a química verde promove o cuidadoso projeto de processos de fabricação de produtos químicos para reduzir o uso de componentes tóxicos e minimizar o desperdício e o uso de energia. As práticas sustentáveis ​​e mais benignas que seguem os princípios da química verde encontraram apoio na indústria e no governo e estão sendo pesquisadas cada vez mais por universidades e agências governamentais em todo o mundo.

Quando o ibuprofeno, o analgésico popular que remedia dores de cabeça, rigidez muscular e febres, foi fabricado pela primeira vez na década de 1960, gerou mais resíduos do que o medicamento. Os químicos faziam ibuprofeno adicionando um excesso de tricloreto de alumínio ao isobutil-benzeno e forçando uma reação de seis etapas com solventes e agentes de separação. Embora o método certamente tenha sintetizado o medicamento, era altamente ineficiente e produzia subprodutos indesejados em cada etapa do processo: uma produção anual de 13,6 milhões de quilogramas de ibuprofeno gerava 20,4 milhões de quilogramas de resíduos, a maioria sendo desperdiçada.

Mas no início dos anos 90, o ibuprofeno sofreu uma transformação. Usando catalisadores em vez de reagentes em excesso para impulsionar as reações, os químicos cortaram pela metade o número de estágios no processo de fabricação do ibuprofeno e eliminaram do processo o tetracloreto de carbono, um solvente tóxico. No novo processo, a economia de átomos – a porcentagem de matérias-primas e reagentes usados ​​na síntese que termina no produto final – oscilava entre 80% e 99%. Esses materiais e reagentes que não acabaram no produto final, como o ácido acético, podem ser recuperados ou reciclados. A reação renovada não só foi boa para os negócios (na medida em que reduziu os custos de limpeza e minimizou o consumo de matérias-primas), foi boa para o meio ambiente.

Mais recentemente, um novo tipo de química – a química verde – está tomando conta da academia, da indústria e do governo.

Não é preciso ir muito longe no passado para encontrar exemplos de produtos químicos e processos químicos que tiveram um impacto negativo na saúde humana e no meio ambiente. Mas, mais recentemente, um novo tipo de química – a química verde – está tomando conta da academia, da indústria e do governo. A química verde repensa o design de processos químicos e oferece benefícios ambientais, reduzindo o desperdício, eliminando tratamentos químicos dispendiosos e reduzindo o uso de energia e recursos. De acordo com a Sociedade Americana de Química [American Chemical Society (ACS)], essa revolução química estimula a criatividade e inventividade dos cientistas, ao mesmo tempo em que aumenta o desempenho e o valor de produtos químicos e materiais.

Inicia na indústria, termina no Nobel
A química verde tornou-se moda apenas nas duas últimas décadas, mas suas origens remontam à indústria dos anos 50. Em 1956, químicos do departamento petroquímico da DuPont em Wilmington, Delaware, descobriram que a passagem de propeno sobre um catalisador de molibdênio sobre alumínio produzia uma mistura de propeno, eteno e 1-buteno. Outros químicos descobriram resultados semelhantes quando combinaram olefinas (alcenos) com outros catalisadores de molibdênio. Os produtos foram o resultado da quebra e reconstrução das ligações duplas nos alcenos. O carbono da ligação dupla de um alceno trocava de lugar com um carbono da ligação dupla do outro alceno. Mas os químicos não tinham um mecanismo para explicar o que estava acontecendo.

Várias teorias foram propostas durante os 15 anos seguintes, mas foi somente em 1971 que Yves Chauvin, do Instituto Francês do Petróleo, juntamente com o estudante Jean-Louis Hérisson, identificou o processo: um metal-carbeno estava desencadeando a reação. Chauvin batizou de dança molecular, na qual um parceiro era expulso por outro. Vinte anos depois, Richard Schrock, do Massachusetts Institute of Technology, descobriu quais metais poderiam ser usados ​​como catalisadores. Um grupo de catalisadores de molibdênio foi particularmente efetivo em rearranjar as ligações duplas dos compostos. Mas estes eram altamente reativos e sensíveis ao oxigênio e à umidade. Eles estavam longe de serem perfeitos. Em 1992, Robert Grubbs, do Instituto de Tecnologia da Califórnia, descobriu um catalisador de rutênio que era estável ao ar e mais seletivo que os catalisadores de Schrock.

Juntas, essas contribuições dos químicos explicaram e desenvolveram a reação de metátese de olefinas, criando uma nova ferramenta para encurtar a rota até uma molécula desejada e reduzir o número de subprodutos indesejados e muitas vezes perigosos. Sua descoberta abriu novas oportunidades na produção industrial de produtos farmacêuticos, plásticos e outros materiais.

O trabalho também rendeu a Chauvin, Schrock e Grubbs o Prêmio Nobel de Química em 2005. Per Ahlberg, membro da Real Academia Sueca de Ciências e do Comitê Nobel de Química, proclamou durante seu discurso de apresentação: “A metátese também economiza energia e material e é amigável com o meio ambiente. Isso nos leva a um passo em direção a um futuro “mais verde”. A ocasião marcou a primeira vez que a Academia Real Sueca de Ciências reconheceu a química verde – o design de produtos químicos e processos que reduzem ou eliminam o uso e a produção de substâncias perigosas para os seres humanos e o meio ambiente – mas o campo vinha ganhando terreno por mais de uma década.

Incentivando Práticas Verdes
A legislação tem controlado o uso, tratamento e descarte de produtos químicos desde a década de 1960. Essa abordagem regulatória tradicional de “comando e controle” custava bilhões de dólares às empresas e ainda acarretava na liberação de vários bilhões de quilos de resíduos químicos no meio ambiente todos os anos. Isso estava previsto para mudar em 1990, quando o Congresso dos EUA aprovou a Lei de Prevenção da Poluição, que procurava reduzir a poluição em sua fonte.

Um ano antes, Paul Anastas era um jovem químico orgânico sintético da Universidade Brandeis. Ele tinha acabado de obter um PhD em química e tinha uma carreira promissora na pesquisa do câncer diante dele, mas ansiava por algo mais. Em vez de projetar moléculas para combater o câncer e trabalhar como consultor industrial, ele queria desenvolver uma estrutura que impedisse a ocorrência de câncer em primeiro lugar. Isso significava evitar que resíduos perigosos fossem liberados no meio ambiente, redesenhando processos e produtos químicos em nível molecular, de modo que fossem “benignos por design”. Em 1989, Anastas aceitou um cargo no Escritório de Prevenção da Poluição e Substâncias Tóxicas da Agência de Proteção Ambiental dos EUA (EPA); em 1991, ele cunhou o termo química verde .

Atualmente, cerca de uma dúzia de universidades e faculdades americanas oferecem aulas de química verde.

Mesmo com a Lei de Prevenção da Poluição, havia pouca motivação financeira para a indústria – ou a academia – procurar processos químicos alternativos. A EPA e a National Science Foundation (NSF) lançaram uma série de programas de subsídios na esperança de obter algumas soluções. Em 1991, a EPA lançou um programa de química verde. Uma parte do programa, “Caminhos sintéticos alternativos para a prevenção da poluição”, ofereceu subsídios para projetar e sintetizar produtos químicos que poderiam reduzir a produção de poluentes. Em 1992, a NSF uniu-se ao Conselho para Pesquisa Química, uma organização sem fins lucrativos, para desenvolver o programa de pesquisa “Síntese e Processamento Químico Ambientalmente Benigno”. Investiu US$ 950.000 em projetos que buscavam desenvolver catalisadores mais seletivos e reações novas ou mais limpas que substituíssem aquelas que exigiam matérias-primas ou solventes tóxicos, e outras que eliminariam partículas de aerossóis.

Foi nessa época que Anastas se encontrou com um químico da Polaroid Corporation chamado John Warner. Warner havia desenvolvido um processo chamado derivatização não-covalente para estabilizar as moléculas em filme instantâneo de múltiplas camadas e evitar que o filme se deteriorasse enquanto estava nas prateleiras das lojas. A química era simples e menos tóxica; satisfez os princípios da química verde que a EPA estava tentando promover. A dupla tornou-se defensora do futuro da química verde, falando sobre o assunto sempre que podia.

Quando Terry Collins, agora diretor do Instituto de Química de Oxidação Verde da Universidade Carnegie Mellon, ouviu pela primeira vez sobre a química verde de Anastas, percebeu que seus interesses de pesquisa estavam alinhados com as iniciativas da EPA. (Desde a década de 1980, Collins procurava catalisadores que pudessem ativar o peróxido de hidrogênio como uma alternativa aos alvejantes à base de cloro, reduzindo ou possivelmente até mesmo eliminando os subprodutos clorados das águas residuais.) Ele percebeu que seus alunos estavam aprendendo as propriedades técnicas dos produtos químicos, mas não estavam aprendendo sobre seus perigos. Como se poderia esperar que a próxima geração de químicos tivesse suas pesquisas futuras guiadas pelos princípios da química verde se não soubessem nada sobre isso? Em 1992, Collins lançou a primeira turma de nível universitário em química verde. Hoje, cerca de uma dúzia de universidades e faculdades americanas oferecem aulas de química verde.

Embora houvesse um crescente apoio institucional e industrial à química verde, Anastas sentiu que havia pouco reconhecimento para aqueles que a abraçaram e não havia financiamento de pesquisa suficiente para encorajar outros a fazê-lo. Enquanto ainda na EPA Anastas pressionou para o desenvolvimento de um programa de premiação que homenagearia empresas e indivíduos que tinham projetado produtos químicos e processos que evitavam o desperdício e a poluição.

Os Prêmios Presidenciais do Desafio da Química Verde foram anunciados em 1995, surgindo da “Iniciativa de Reinventar a Regulamentação Ambiental” do governo Clinton. Para os primeiros prêmios em 1991, os jurados selecionaram cinco projetos que exemplificaram a inovação científica, a aplicabilidade industrial e a segurança ambiental e de saúde. Entre eles estava um novo agente anti-incrustante marinho desenvolvido pela Rohm and Haas: controlava o crescimento de plantas e animais nos cascos dos navios sem a toxicidade e a persistência associadas aos agentes anti-incrustantes convencionais. O composto, 4,5-dicloro-2-n-octil-4-isotiazolin-3-ona, degradou-se rapidamente em água do mar e sedimentos e não se bioacumulou em organismos marinhos. (A empresa ganhou o prêmio novamente em 1998 por desenvolver um pesticida menos tóxico para controlar as pragas de lagartas em lavouras e em gramados, como os que são mantidos em campos de golfe.)

Ano após ano, a química verde continuou a influenciar novos projetos e iniciativas. Anastas reuniu um grupo de inovadores verdes na indústria, da academia e dos laboratórios nacionais para fundar o Instituto Química Verde [Green Chemistry Institute (GCI)] em 1997. A organização sem fins lucrativos visava inspirar pesquisas, organizar reuniões e construir parcerias industriais. (Tornou-se parte do ACS em 2001.)

Anastas reuniu um grupo de inovadores verdes na indústria, da academia e dos laboratórios nacionais para fundar o GCI em 1997.

Em 1998, Anastas e Warner se juntaram para publicar Química Verde: Teoria e Prática , uma introdução básica à química verde que delineava os 12 princípios da química verde (ver Tabela) e articulava a necessidade de solventes mais seguros, matérias-primas renováveis ​​e reagentes catalíticos, e destacou a importância de projetar produtos químicos para degradação. Em 2001, sob a liderança de Warner, a Universidade de Massachusetts-Boston (UMB) começou a aceitar estudantes no primeiro programa de doutorado em química verde.

O entusiasmo de Warner se espalhou para a indústria farmacêutica. No final da década de 1990, Buzz Cue, ex-vice-presidente de ciências farmacêuticas dos laboratórios de pesquisa da Pfizer em Groton, Connecticut, foi membro do conselho consultivo científico da UMB. Ele viu um papel para a química verde na indústria farmacêutica, particularmente no nível de fabricação. Em 2005, Cue, Anastas (que desde então se mudou para liderar o Green Chemistry Institute na ACS) e um punhado de empresas farmacêuticas globais, incluindo a Pfizer, formaram a mesa redonda farmacêutica do GCI. O grupo identificou 10 reações que precisavam de alternativas mais ecológicas e se propuseram a financiar até dois projetos em laboratórios de pesquisa acadêmica anualmente. A mesa redonda financiou 3 laboratórios até o momento.

Esforço não desperdiçado
Talvez uma das aplicações mais importantes da química verde seja na concepção e fabricação de produtos farmacêuticos. Em uma proporção de resíduo para produto, a indústria farmacêutica é uma das menos aceitáveis ​​ambientalmente, gerando 25 a 100 quilogramas de resíduos para cada quilograma de ingrediente farmacêutico ativo fabricado. Tanto quanto 80% desse lixo é solvente. Embora os solventes tenham um papel crítico na fabricação de medicamentos, fornecendo um meio de reação e transferindo calor, os maiores volumes são usados ​​para separar compostos indesejados do produto final.

Em uma proporção de resíduo para produto, a indústria farmacêutica é uma das menos aceitáveis ​​ambientalmente, gerando 25 a 100 quilogramas de resíduos para cada quilograma de ingrediente farmacêutico ativo fabricado.

Por que não projetar a reação para reduzir o desperdício em primeiro lugar? Em 2002, a Pfizer ganhou o prêmio Presidential Green Challenge por melhorar o processo de fabricação da sertralina, o ingrediente ativo do antidepressivo Zoloft. Utilizando um catalisador de paládio mais seletivo, o novo processo de fabricação cortou uma sequência de reação de três etapas em uma única reação, com o bônus de eliminar subprodutos indesejáveis. Trocou por etanol relativamente benigno os quatro solventes – cloreto de metileno, tetraidrofurano, tolueno e hexano – e eliminou anualmente 140.000 quilogramas de tetracloreto de titânio, 99.000 quilogramas de hidróxido de sódio a 50%, 149.000 quilogramas de ácido clorídrico a 35% e 440.000 quilogramas de resíduos sólidos de dióxido de titânio. O novo processo gerou menos resíduos, incorporando uma maior proporção das matérias-primas no produto e reduzindo os custos associados ao armazenamento, tratamento e descarte dos resíduos. Cue chamou isso de “benefício duplo-econômico”. A química verde continua a influenciar a indústria farmacêutica, mas continua sendo um desafio conseguir que empresas de pequeno e médio porte e a indústria de genéricos aprendam e apliquem seus princípios.

Outras indústrias também estão tomando conhecimento. Empresas de materiais especiais como a ‘Rohm and Haas’ continuam a substituir os ingredientes tóxicos por alternativas mais ecológicas em tudo, desde mantas de isolamento até na preservação da madeira. As tecnologias médicas, a fabricação de madeira, os produtos de consumo, a impressão, as tintas e o controle de pragas tornaram-se menos perigosos por meio da química verde.

Mesmo assim, o financiamento para estudar química verde e desenvolver química benigna sempre foi, e continua sendo, escasso. Algumas iterações da legislação proposta não foram aprovadas no Senado em 2004 e 2005. No entanto, apesar dos muitos desafios que permanecem, a aprovação em 2007 pela Câmara dos Deputados [americana] de um projeto de lei que alocará quase US$ 200 milhões em três anos para pesquisa e desenvolvimento em química verde certamente é uma boa notícia.

A história da química verde, embora breve, mostra como o otimismo de alguns entusiastas pode ser uma faísca de inspiração na academia e na indústria. A legislação não resolveu o problema dos produtos químicos tóxicos, mas levou a indústria a perceber que há benefícios econômicos em projetar reações mais inteligentes.

Texto escrito por Hannah Hoag.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( [email protected] ) do original ‘The Greening of Chemistry’ com autorização oficial dos detentores dos direitos. Revisado por: Kelly Vargas.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

Escreva um comentário