Acender um fósforo com ácido sulfúrico

O vídeo do canal NurdRage já inicia com um aviso! Esta demonstração lida com ácidos e líquidos inflamáveis. O experimento somente deve ser repetido em condições totalmente seguras e com uso de equipamento de proteção individual adequado.

Os fósforos que normalmente encontramos em supermercados não contém o elemento fósforo na ‘cabeça’, e em alguns casos o fósforo está presente na lixa da caixa; e mesmo assim em pequena quantidade.

A demonstração é simples. É possível acender um fósforo mergulhando ligeiramente em ácido sulfúrico concentrado.

O segredo é não molhar muito o palito, usar ácido sulfúrico concentrado e imergir a cabeça dos palitos rapidamente em acetona para remover possível camada protetora.

Qual é a utilidade deste experimento? Talvez demonstrar o quão exotérmica é a reação do ácido sulfúrico com o clorato de potássio presente no fósforo.

Vídeo com legenda em português. Ative a legenda pelo YouTube.

Legenda e texto escritos por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) – Universidade Federal do Pampa – Licenciatura em Química.

A estranha e horrível busca pela Substância X

Nossa compreensão das endorfinas pode ser rastreada até a cabeça de um porco. (Boston Public Library, Leslie Jones Collection)

Sam Kean reconta a busca pelos furtivos analgésicos cerebrais.

Todas as manhãs antes do amanhecer, o neurocientista John Hughes pedalava até o matadouro com uma serra, um machado e uma faca em uma cesta. Ele cumprimentava os homens mal-humorados que cerravam as cabeças dos porcos e iniciava sua súplica diária para que lhe cedessem alguns dos crânios. A princípio, Hughes assegurava a cooperação, exibindo as maravilhas da neurociência e a nobreza de sua pesquisa. Pense em todas as pessoas que poderíamos ajudar a controlar a dor crônica, ele explicou, se soubéssemos como o próprio cérebro acalma a dor usando neurotransmissores. Hughes logo percebeu, no entanto, que com uma boa garrafa de uísque conseguia a cooperação dos trabalhadores muito mais rapidamente, e ele começou a adicionar algumas à sua cesta todas as manhãs.

A descoberta da maioria dos neurotransmissores – substâncias químicas que enviam sinais de um neurônio para outro dentro do cérebro – seguiu um padrão repetitivo. Os cientistas se deparam com uma nova substância química no cérebro enquanto investigavam o comportamento celular. Eles isolavam e testavam a amostra purificada nos neurônios no laboratório. Se isso afetasse o comportamento desses neurônios de maneira clara e consistente, então a substância química provavelmente faria algo semelhante dentro do cérebro vivo. Essa estratégia foi muito bem-sucedida ao longo do século 20 e ajudou os cientistas a identificar a maioria dos cerca de cem neurotransmissores que conhecemos hoje.

Mas houve uma grande exceção a esse padrão: a descoberta dos analgésicos naturais do cérebro – as endorfinas. Quando se tratava de dor, os cientistas começaram estudando como a morfina, o ópio e outras drogas semelhantes funcionavam e só mais tarde começaram a procurar substâncias químicas no cérebro. Em geral, os neurotransmissores transmitem mensagens bloqueando a superfície das células: um neurônio libera a substância química, que nada através de uma pequena junção (a sinapse) e liga-se a receptores em outro neurônio. Durante a década de 1950, os cientistas perceberam que os opiáceos também funcionavam ligando-se aos receptores dos neurônios. E se esses produtos químicos artificiais eram tão adequados à ligação, o cérebro já deveria empregar substâncias químicas naturais com uma estrutura semelhante – ou os receptores não existiriam.

Quais eram essas substâncias químicas, no entanto, ninguém sabia. Então Hughes, um jovem londrino que trabalhava em Aberdeen, na Escócia, decidiu procurá-las. Acabou sendo um dos projetos mais sujos e nauseantes da história da ciência.

Hughes chamou os supostos novos neurotransmissores de Substância X, e por alguma razão ele decidiu que o melhor lugar para procurá-los era dentro do cérebro dos porcos, o que significava uma visita diária ao matadouro com sua serra e garrafa de uísque. Bem subornados, os trabalhadores levavam para Hughes cerca de 20 crânios de porco e, enquanto ele lutava contra ratos, ele cortava cada cérebro do tamanho de uma toranja em cerca de 10 minutos e depois os empacotava em gelo seco. Várias horas depois, ele voltava ao laboratório, esmagava os cérebros até ficar uma pasta cinzenta e os dissolvia em acetona. (Colegas lembram da combinação que cheirava à cola de avião e gordura rançosa.) Finalmente, ele centrifugava a pasta e evaporava as várias camadas para testar se elas eram a Substância X.

Agora vinha a parte estranha. O mentor de Hughes, Hans Kosterlitz, era especialista mundial em duas partes da anatomia extremamente específicas: o íleo de Cavia e o ducto deferente murino, mais conhecido como intestino de porquinho-da-índia e tubo de espermatozoides de camundongo. Quando dissecados do resto do corpo, cada uma dessas partes parecem minúsculas e enroladas, e cada uma tem uma propriedade bizarra. Se você suspendê-la em solução salina e ativar um certo nervo, ela vai se contrair por conta própria, batendo como se estivesse de alguma forma loucamente viva.

Igualmente bizarro, em algum ponto, Kosterlitz determinara que tanto o íleo Cavia quanto o ducto deferente murino eram superlativamente sensíveis a substâncias químicas semelhantes à morfina. Ou seja, uma vez que esses órgãos começassem a se contrair, até mesmo traços de morfina parariam imediatamente os espasmos. Assim, Kosterlitz e Hughes passaram meses ativando os tubos e intestinos de espermatozoides – produzindo evacuações e orgasmos desincorporados em um béquer – e injetando substâncias após substâncias dos cérebros dos porcos para ver se alguma coisa interrompia esses espasmos. Eles finalmente encontraram uma substância – uma cera amarela com cheiro de manteiga estragada – que interferia nas contrações, da mesma forma como a morfina. A Substância X foi encontrada.

A Substância X acabou ficando conhecida como endorfina, uma junção de “morfina endógena” e, exatamente como Hughes esperava, estudá-la forneceu informações importantes sobre como o corpo administra e até bloqueia a dor. Então, da próxima vez que você estiver correndo e de repente sentir o prazer de correr, ou você esmagar o seu polegar com um martelo e notar que ele não dói tanto quanto deveria, você pode agradecer ao John Hughes, e sua pilha de miolos de porco por revelar o porquê.

Texto escrito por Sam Kean.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘The Strange, Gruesome Search for Substance X’ com autorização oficial dos detentores dos direitos.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]


Os limites das baterias de íon lítio

experimentos do avanço das baterias
Vários dos equipamentos que vemos atualmente só foram possíveis, com toda sua conveniência e portabilidade, com o avanço da capacidade e tecnologia das baterias.

Podemos dizer que as baterias de íon lítio são as campeãs em versatilidade para uso doméstico.

Mas… até onde será possível aprimorar a capacidade e a tecnologia deste tipo de baterias? Qual é o limite teórico? Qual é o limite técnico para o íon lítio?

No vídeo abaixo, do canal minutephysics, comenta sobre o seguinte aspecto: qual é o limite de densidade de energia possível no íon lítio?

Seria possível termos baterias do tipo ‘lítio-enxofre’ ou ‘lítio-oxigênio’?

Vídeo COM legenda em português.

Legenda e texto escritos por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) – Universidade Federal do Pampa – Licenciatura em Química.

Como fazer uma pilha AA?

como fazer uma bateria caseira
O NurdRage ensina como fazer uma pilha AA (alcalina); e logo no início do vídeo já avisa que é muito mais barato comprar uma pilha pronta. A demonstração tem como objetivo explorar a ciência do procedimento.

Material necessário:
– seringa de plástico de 5mL (para o envoltório da pilha)
– zinco metálico (em folha)
– 50mL de água
– 30g de hidróxido de potássio
– 8g de dióxido de manganês
– 3g de carbono em pó
– papel filtro
– 7cm de grafite grosso

A pilha resultante deveria chegar em 1,5V de tensão, mas o NurdRage obteve em torno de 1,41V – o que não é um resultado tão ruim se considerarmos a técnica artesanal utilizada.

Vídeo com legenda em português.

Legenda e texto escritos por Prof. Dr. Luís Roberto Brudna – Universidade Federal do Pampa.

Outros textos:
Pilhas e cervejas no Mythbusters
Reação de dióxido de manganês com peróxido de hidrogênio

Estruturas cristalinas e leis da termodinâmica

cristalização e termodinâmica

No vídeo abaixo, do canal ‘The Royal Institution’, você poderá ver um pouco mais sobre a curiosa relação entre os cristais e a termodinâmica.

A cristalização parece ir contra a consideração de aumento de entropia (desordem); mas na verdade o processo de cristalização normalmente libera calor, gerando um aumento global na entropia (desordem).

Vídeo com legenda em português.

Texto e legenda escritos por Prof. Dr. Luís Brudna ( luisbrudna@gmail.com ).

Coleção de minerais de Raman

Museu Raman
Martyn Poliakoff faz um passeio pela coleção particular de minerais do físico indiano Chandrasekhara Venkata Raman.

Raman recebeu o prêmio Nobel de física em 1930 por seus trabalhos em dispersão da luz. Este conhecimento é utilizado na técnica batizada ‘Espectroscopia Raman’.

No vídeo você poderá ver pérolas, quartzo com líquido, opalas, diamantes, carborundum, rochas de Hiroshima e minerais fluorescentes em luz UV.

Vídeo com legenda em português.

Texto e legenda escritos pro Prof. Dr. Luís Brudna ( luisbrudna@gmail.com ). Universidade Federal do Pampa – Bagé.