Categoria: História

A estranha e horrível busca pela Substância X

Nossa compreensão das endorfinas pode ser rastreada até a cabeça de um porco. (Boston Public Library, Leslie Jones Collection)

Sam Kean reconta a busca pelos furtivos analgésicos cerebrais.

Todas as manhãs antes do amanhecer, o neurocientista John Hughes pedalava até o matadouro com uma serra, um machado e uma faca em uma cesta. Ele cumprimentava os homens mal-humorados que cerravam as cabeças dos porcos e iniciava sua súplica diária para que lhe cedessem alguns dos crânios. A princípio, Hughes assegurava a cooperação, exibindo as maravilhas da neurociência e a nobreza de sua pesquisa. Pense em todas as pessoas que poderíamos ajudar a controlar a dor crônica, ele explicou, se soubéssemos como o próprio cérebro acalma a dor usando neurotransmissores. Hughes logo percebeu, no entanto, que com uma boa garrafa de uísque conseguia a cooperação dos trabalhadores muito mais rapidamente, e ele começou a adicionar algumas à sua cesta todas as manhãs.

A descoberta da maioria dos neurotransmissores – substâncias químicas que enviam sinais de um neurônio para outro dentro do cérebro – seguiu um padrão repetitivo. Os cientistas se deparam com uma nova substância química no cérebro enquanto investigavam o comportamento celular. Eles isolavam e testavam a amostra purificada nos neurônios no laboratório. Se isso afetasse o comportamento desses neurônios de maneira clara e consistente, então a substância química provavelmente faria algo semelhante dentro do cérebro vivo. Essa estratégia foi muito bem-sucedida ao longo do século 20 e ajudou os cientistas a identificar a maioria dos cerca de cem neurotransmissores que conhecemos hoje.

Mas houve uma grande exceção a esse padrão: a descoberta dos analgésicos naturais do cérebro – as endorfinas. Quando se tratava de dor, os cientistas começaram estudando como a morfina, o ópio e outras drogas semelhantes funcionavam e só mais tarde começaram a procurar substâncias químicas no cérebro. Em geral, os neurotransmissores transmitem mensagens bloqueando a superfície das células: um neurônio libera a substância química, que nada através de uma pequena junção (a sinapse) e liga-se a receptores em outro neurônio. Durante a década de 1950, os cientistas perceberam que os opiáceos também funcionavam ligando-se aos receptores dos neurônios. E se esses produtos químicos artificiais eram tão adequados à ligação, o cérebro já deveria empregar substâncias químicas naturais com uma estrutura semelhante – ou os receptores não existiriam.

Quais eram essas substâncias químicas, no entanto, ninguém sabia. Então Hughes, um jovem londrino que trabalhava em Aberdeen, na Escócia, decidiu procurá-las. Acabou sendo um dos projetos mais sujos e nauseantes da história da ciência.

Hughes chamou os supostos novos neurotransmissores de Substância X, e por alguma razão ele decidiu que o melhor lugar para procurá-los era dentro do cérebro dos porcos, o que significava uma visita diária ao matadouro com sua serra e garrafa de uísque. Bem subornados, os trabalhadores levavam para Hughes cerca de 20 crânios de porco e, enquanto ele lutava contra ratos, ele cortava cada cérebro do tamanho de uma toranja em cerca de 10 minutos e depois os empacotava em gelo seco. Várias horas depois, ele voltava ao laboratório, esmagava os cérebros até ficar uma pasta cinzenta e os dissolvia em acetona. (Colegas lembram da combinação que cheirava à cola de avião e gordura rançosa.) Finalmente, ele centrifugava a pasta e evaporava as várias camadas para testar se elas eram a Substância X.

Agora vinha a parte estranha. O mentor de Hughes, Hans Kosterlitz, era especialista mundial em duas partes da anatomia extremamente específicas: o íleo de Cavia e o ducto deferente murino, mais conhecido como intestino de porquinho-da-índia e tubo de espermatozoides de camundongo. Quando dissecados do resto do corpo, cada uma dessas partes parecem minúsculas e enroladas, e cada uma tem uma propriedade bizarra. Se você suspendê-la em solução salina e ativar um certo nervo, ela vai se contrair por conta própria, batendo como se estivesse de alguma forma loucamente viva.

Igualmente bizarro, em algum ponto, Kosterlitz determinara que tanto o íleo Cavia quanto o ducto deferente murino eram superlativamente sensíveis a substâncias químicas semelhantes à morfina. Ou seja, uma vez que esses órgãos começassem a se contrair, até mesmo traços de morfina parariam imediatamente os espasmos. Assim, Kosterlitz e Hughes passaram meses ativando os tubos e intestinos de espermatozoides – produzindo evacuações e orgasmos desincorporados em um béquer – e injetando substâncias após substâncias dos cérebros dos porcos para ver se alguma coisa interrompia esses espasmos. Eles finalmente encontraram uma substância – uma cera amarela com cheiro de manteiga estragada – que interferia nas contrações, da mesma forma como a morfina. A Substância X foi encontrada.

A Substância X acabou ficando conhecida como endorfina, uma junção de “morfina endógena” e, exatamente como Hughes esperava, estudá-la forneceu informações importantes sobre como o corpo administra e até bloqueia a dor. Então, da próxima vez que você estiver correndo e de repente sentir o prazer de correr, ou você esmagar o seu polegar com um martelo e notar que ele não dói tanto quanto deveria, você pode agradecer ao John Hughes, e sua pilha de miolos de porco por revelar o porquê.

Texto escrito por Sam Kean.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘The Strange, Gruesome Search for Substance X’ com autorização oficial dos detentores dos direitos.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]


Efervescência poderosa

fonte mineral antiga
Cartão postal de um resort em Desert Hot Springs, California, ca. 1930–1945. (Fonte: Boston Public Library)

No século XVIII, Joseph Priestley e outros desenvolveram processos para a fabricação de água mineral carbonatada artificialmente, unindo os poderes terapêuticos de um antigo restaurador natural com a ciência emergente da química moderna.

As águas minerais gasosas do século XXI são bebidas de alto padrão: Vichy, Evian e Perrier persistem como símbolos de sabor e classe. Mais do que apenas uma bebida, no entanto, a água com gás representa um dos últimos vestígios das fontes termais terapêuticas que foram um dos pilares da medicina ocidental por mais de dois milênios. A história de sua ascensão e queda não é apenas a base oculta da massiva indústria moderna de refrigerantes, mas também a história de uma crescente aliança entre química e medicina que reformularia a prática terapêutica ocidental.

Cartaz francês anunciando as águas da nascente de Saint-Yorre de Vichy. Litografia a cores de Albert Guillaume, 1896.

Les affiches illustrées via Wikimedia Commons

Em junho de 1772, o ministro [do partido] Radical Joseph Priestley (1733-1804) descreveu os detalhes de um processo que acabaria por lhe render o maior prêmio da Royal Society, a Medalha Copley. Ele tinha pingado um pouco de óleo de vitríolo (ácido sulfúrico) em uma mistura de giz e água, capturou o ar fixo (dióxido de carbono) que borbulhava do giz em uma bexiga e borbulhou o ar fixo por uma coluna de água, que ele então agitou em intervalos. A substância resultante foi, Priestley escreveu, “uma água espumante extremamente agradável, parecida com água Seltzer”.

As histórias da indústria de refrigerantes geralmente começam com esse momento – um dos primeiros métodos simples de produzir o que hoje chamamos de água gaseificada. Os historiadores da química também se referem a ele como um evento significativo no desenvolvimento da química pneumática (o estudo dos gases dos séculos XVII ao XIX). Como muitos de seus colegas químicos, Priestley estava aperfeiçoando a recente descoberta de que o ar, anteriormente considerado um único elemento (um de apenas quatro), era composto de diferentes elementos. Logo após seu trabalho com água mineral, ele foi creditado com a descoberta do que ele se referiu como “ar deflogisticado”, uma substância que Antoine-Laurent Lavoisier logo batizaria de “oxigênio”.

Mas para Priestley, a água efervescente não era apenas uma bebida agradável, nem era apenas um problema filosófico. Em vez de criar uma nova substância, ele estava imitando uma antiga. Em particular, ele estava tentando recriar a água mineral naturalmente espumante que emergia da famosa “Caverna do Vapor” de Pyrmont, perto de Hanover, na Alemanha. (A água com gás a que ele se refere não é o produto engarrafado moderno, mas as águas das nascentes de Seltzer, Alemanha.) Além disso, não era o sabor único da água de Pyrmont que Priestley procurava, mas seu efeito no corpo. Para Priestley, como para seus contemporâneos, a água era um remédio.

propaganda água mineral
Cartaz francês anunciando as águas da fonte de Saint-Yorre de Vichy. Litografia a cores de Albert Guillaume, 1896. (Fonte: Les affiches illustrées via Wikimedia Commons)

Água como remédio
Durante séculos, os europeus aproveitaram sua paisagem notável e variada de fontes naturais de água mineral. Nascentes quentes como as de Vichy e Bath ofereciam águas aquecidas pelo calor geotérmico ou pelo contato com o magma; outras, como aquelas em Nápoles, eram notáveis ​​por sua frieza dolorida. Algumas eram salgadas, outras tinham sabor de (e cheiravam) enxofre, álcali ou ferro. Finalmente – e talvez o mais misteriosamente – algumas, como das cidades de San Pellegrino, Seltzer, Pyrmont e Vergèze (a fonte de Perrier), tinham o agradável sabor ácido produzido pelas bolhas. Nossa palavra spa vem da cidade de Spa, na Bélgica, cujas águas “chalybeate”, ou ferro-portadoras, eram usadas medicinalmente por 400 anos. Pistas sobre a importância das fontes permanecem nos nomes das cidades modernas que foram fundadas em fontes: Carlsbad e Wiesbaden (Bad significa “banho” em alemão), Baden-Baden, Tunbridge Wells e, claro, Bath.

Durante séculos, os europeus aproveitaram sua paisagem notável e variada de fontes naturais de água mineral.

Registros de hidroterapia e balneologia, o uso medicinal de águas e banhos, remontam à antiguidade clássica. Médicos greco-romanos hipocráticos utilizavam sequências de banhos quentes e frios para equilibrar e harmonizar os humores de seus pacientes. Plínio o Velho e Vitrúvio listaram fontes com qualidades excepcionais para tratar doenças dos tendões, articulações, trato urinário e pele. Os romanos doentes bebiam de fontes alcalinas para se livrarem de tumores e de fontes ácidas para destruir cálculos biliares. As elaboradas ruínas dos complexos de banho romanos em Baden, na Suíça, e Aquae Sulis, na Grã-Bretanha (hoje a cidade de Bath), atestam a intensidade do interesse dos romanos pela hidroterapia.

Embora a medicina hipocrática tenha diminuído temporariamente durante a Idade Média, o uso de fontes minerais continuou. “Poços sagrados”, primeiramente associados a divindades pagãs e depois designados à santos cristãos, ocuparam o lugar dos banhos romanos. O renascimento da medicina grega na Renascença trouxe de volta as fontes antigas à proeminência. Mais tarde, durante o início do período moderno, o surgimento da chamada medicina química produziu novas justificativas para práticas antigas, estimulando a prescrição terapêutica de minerais e metais.

Por volta do século XVIII, as fontes tornaram-se locais da moda, onde visitantes distintos e aristocráticos se reuniam para dançar, passear e “tomar as águas”. Em Bath, uma multidão sazonal de turistas bebia e mergulhava no que hoje sabemos ser uma sopa levemente radioativa de potássio, chumbo, ferro, estrôncio, cálcio, magnésio, bismuto e enxofre. De fato, cidades inglesas como Harrogate e Epsom existiam apenas para sustentar suas nascentes, e as águas terapêuticas de Carlsbad (na atual República Tcheca), Eger (na Hungria), Seltzer, Spa e Pyrmont eram regularmente transportadas pela Europa em garrafas.

Por volta do século XVIII, as fontes tornaram-se locais de moda, onde visitantes gentis e aristocráticos se reuniam para dançar, passear e “tomar as águas”.

Águas Manufaturadas
Dadas as imensas somas investidas e derivadas de fontes minerais, não é surpresa que gerações de químicos, incluindo filósofos naturais bem conhecidos como Robert Boyle, Friedrich Hoffmann e Stephen Hales, tentassem explicar o que tornava cada fonte única. Além disso, quando as primeiras análises químicas revelaram materiais conhecidos como ferro, nitro, vitríolo, sal marinho e alúmen, era certo que as tentativas de imitar ou mesmo superar a natureza logo se seguiriam.

Talvez a mais espetacular dessas imitações tenha sido “o duque Bagnio” ou “New Spaw”. Este banho turco, estabelecido no Long Acre de Londres por Samuel Haworth, médico do duque de York, apresentava águas minerais artificiais que pareciam borbulhar no chão. Logo após a abertura do Bagnio em 1685, Robert Boyle publicou um ensaio sobre “a imitação das Águas Medicinais Naturais, por meios químicos e outros”, que ele pretendia “ajudar o médico a adivinhar a qualidade e a quantidade de outros ingredientes que impregnavam a Água Natural proposta ”. Em 1698, o botânico Nehemiah Grew comercializou os sais de Epsom (sulfato de magnésio) como uma recriação simples e duradoura das águas minerais de Epsom, e depois bebido como um purgante e famoso por sua eficácia contra as úlceras. Até hoje, os sais de Epsom são usados ​​como escalda pés e bebido como remédio para a constipação.

No início do século XVIII, dezenas de químicos e médicos inventavam (e os pacientes bebiam) garrafas de água mineral artificiais, feitas de escória de fundição, potassa, creme de tártaro, cal viva e alúmen. Com o passar do século, os fabricantes de águas artificiais começaram a argumentar que seus produtos tinham certas vantagens sobre as substâncias naturais. Não só havia água mineral artificial disponível fora das “estações” dos spas, mas também podia ser mantida livre das substâncias venenosas que às vezes atormentavam as águas naturais. Também podiam ser feitas em concentrações mais altas, permitindo que os pacientes obtivessem os mesmos benefícios sem precisar beber doses tão grandes quanto 16 litros por dia.

Esta série de imitações deixava os médicos que praticavam em fontes minerais em um dilema. Embora apreciassem a análise química como método de demonstrar as virtudes de suas nascentes, ficavam compreensivelmente nervosos que a análise possibilitasse a imitação. Teorias anteriores, como a ideia de que diferentes águas minerais eram “especialidades naturais”, medicamentos criados pela natureza para benefício do homem como evidência do desígnio beneficente de Deus, pareciam oferecer apoio a alegações da superioridade das águas minerais naturais. Essa ambivalência resultou em debates públicos em panfletos e revistas médicas: as águas minerais funcionavam porque continham produtos químicos valiosos, o que poderíamos chamar de “ingredientes ativos”? Ou seriam apenas eficazes como conjuntos complexos, emergentes de fontes naturais, criados por processos subterrâneos que os humanos não poderiam esperar imitar?

Priestley e sua água efervescente
Um dos argumentos mais fortes a favor do uso de águas minerais naturais era a sua efervescência. As águas retiradas das nascentes efervescentes e mantidas por muito tempo perdiam seu “espírito mineral”; isto é, ficavam insossas. Mesmo quando frescas, as primeiras águas artificiais não possuíam esse “espírito”. Embora nem todas as fontes naturais possuíssem as propriedades borbulhantes que atraíam os que procuravam a saúde em Pyrmont, Vichy e Seltzer, tanto a evanescência das bolhas quanto o sabor alterado das águas sem gás sugeriam que as águas irrevogavelmente perdiam uma qualidade importante quando imitadas ou levadas para longe de sua fonte.

Foi precisamente essa questão que tornou o trabalho de Priestley na água mineral tão significativo. Ao trabalhar para restaurar o espírito mineral, Priestley foi capaz de se basear no trabalho de numerosos predecessores. Na década de 1720, o clérigo e fisiologista Stephen Hales desenvolvera o aparato pneumático, que Priestley usaria mais tarde para manipular gases puros, como uma maneira de medir os “ares” criados pelos processos fisiológicos. Na década de 1750, o químico e médico Joseph Black identificou a substância que agora chamamos de dióxido de carbono como “ar fixo” e, e na década de 1760 o médico William Brownrigg (1711–1800) argumentou que o espírito mineral das águas minerais era idêntico às bolhas produzidas pela fermentação e ao “asfixiante” que ameaçava os mineiros.

Um dos argumentos mais fortes a favor do uso de águas minerais naturais era a sua efervescência.

Para Priestley, estudos recentes do ar fixo sugeriram novas possibilidades terapêuticas. A recente candidatura de Priestley ao posto de naturalista de embarcação na segunda viagem do explorador James Cook levou à atenção de Priestley o problema médico incapacitante da Marinha Britânica, o escorbuto. Sendo que os recentes trabalhos sobre o apodrecimento da carne pelo médico David MacBride (1726-1778) pareciam sugerir que o ar fixo interrompia a putrefação, Priestley argumentou que beber a água impregnada com ar fixo não deveria apenas curar o escorbuto, que se pensava ser uma espécie de podridão, também outras doenças associadas à putrefação, incluindo pulmões ulcerados e cânceres. Atendendo a aprovação da Marinha Britânica, o aparelho de Priestley para borbulhar ar fixo através da água foi embarcado nos navios de Cook.

Três anos após a publicação do panfleto de Priestley intitulado “Impregnando Água com Ar Fixo”, o médico britânico John Mervyn Nooth apresentou à Royal Society o equipamento Nooth, um arranjo vertical de três vasos de vidro que arejavam a água no vaso central infundindo-a com ar por baixo. O equipamento Nooth tornou-se o modelo para os dispositivos de carbonatação usados ​​nas drogarias. O famoso químico Benjamin Silliman usou o equipamento de Nooth quando introduziu as águas minerais produzidas comercialmente nos Estados Unidos, abrindo lojas primeiro perto de sua casa na Universidade de Yale e depois em Nova York e Filadélfia. Na década de 1780, outro contato de Priestley, o joalheiro suíço e cientista amador Jacob Schweppe, rapidamente assumiu o mercado de Londres com águas minerais cintilantes artificiais feitas usando um motor de bombeamento. O sifão – que agora chamaríamos de uma garrafa de seltzer – apareceu na Grã-Bretanha em 1837.

Uma segunda onda de águas minerais
Como muitos de seus concorrentes, Schweppe acrescentou ao valor medicinal de seus tônicos misturando-lhes xaropes de ervas – um dos quais evoluiu para uma bebida imortalizada como Ginger Ale, de Schweppe. No decorrer do século XIX, os consumidores se acostumaram com uma série de sabores medicinais, do gengibre e da noz de cola ao quinino, que deu ao gin-tônica seu sabor característico e protegeu da malária os administradores britânicos imperiais. Esses novos produtos foram anunciados tanto como bebidas quanto como medicamentos, sob nomes como “buffalo mead” e “imperial nerve tonic”, que gradualmente perderam seu significado medicinal. A Coca-Cola, originalmente anunciada como um inequívoco medicamento estimulante (embora seu notório conteúdo de cocaína fosse insignificante), seja talvez o exemplo mais famoso dessa transformação.

O banho de água mineral sofreu uma mudança semelhante no significado. Apesar da competição oferecida pelas águas minerais artificiais do final do século XVIII em diante, as visitas à fontes termais e minerais permaneceram como parte importante da terapia até o século XX, como evidenciado pela confiança bem difundida de Franklin Delano Roosevelt nas águas de Warm Springs, Georgia. No entanto, tal como as férias à beira-mar, que foram originalmente concebidas para tirar partido dos poderes curativos do ar do mar, as visitas aos spas tornaram-se cada vez mais meramente recreativas do que terapêuticas.

A água Pyrmont, de Joseph Priestley, não teve sucesso como cura para o escorbuto (embora seu colega Brownrigg tenha se mostrado muito mais bem sucedido, com um dispositivo de carbonatação que misturava giz com suco de limão). Mas examinar os esforços de Priestley nos ajuda a encontrar as raízes da indústria moderna e delineia a forma de um passado médico complexo. Ao beber um copo de ginger ale, água com gás ou Perrier, estamos participando de uma tradição terapêutica secular.

Texto escrito por Emely Pawley.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘Powerful Effervescence’ com autorização oficial dos detentores dos direitos. Revisado por: Natanna Antunes.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

Fosgênio, acetato de celulose, fluoresceína, esqualeno e mais

Uma coleção das últimas publicações no nosso Instagram @ligacaoquimica ( https://www.instagram.com/ligacaoquimica/ ).
Você pode usar livremente as imagens abaixo desde que cite a fonte (ou este blog ou a conta no Instagram). Clique nas imagens para obter a imagem em tamanho maior.

Fluoresceína
informações sobre a fluoresceína
A fluoresceína é um pó de cor avermelhada que se transforma em uma cor verde intensa quando em solução. Este era um dos motivos pelos quais os aviões alemães na Segunda Guerra carregavam uma pequena quantidade de fluoresceína para facilitar a localização e o resgate em caso de acidente na água.
Na década de 60 mais de 45 quilogramas da substância foram usadas para colorir de verde o rio Chicago em uma comemoração do Dia de São Patrício. Atualmente um corante mais ecológico é usado.
https://www.instagram.com/p/BnWCbp9A_1T/

Fosgênio
história e informações químicas sobre o fosgênioTemos uma noção errada de que necessariamente as substâncias tóxicas tem um cheiro ou sabor extremamente ruins e com sintomas rápidos. Este é um cartaz da Segunda Guerra Mundial alertando que armas químicas contendo fosgênio são incolores e tem um cheiro parecido com feno mofado ou milho verde.
O fosgênio foi bastante usado durante a Primeira Guerra Mundial e durante a Segunda Guerra Sino-Japonesa.
https://www.instagram.com/p/BnTqcgUACdr/

Acetato de celulose
informações sobre o acetato de celulose e sua estruturaOs primeiros filmes utilizados na indústria cinematográfica eram feitos com nitrato de celulose, um material tão inflamável que os operadores de projeção recebiam treinamento contra incêndios.
A descoberta do acetato de celulose em 1865, pelo químico francês Paul Schützenberger, foi uma solução para este problema.
Infelizmente parte do acervo registrado em acetato de celulose sofre degradação com o tempo no que é conhecido como ‘síndrome do vinagre’, pela lenta liberação do ácido acético da molécula original. Lembrando que não necessariamente o que é chamado atualmente de ‘acetato’ é feito inteiramente de acetato de celulose.
https://www.instagram.com/p/BnJNFuDD-Jc/

Trimetilamina
trimetilamina informações e estrutura química
Olá! Que temos aqui? É homem ou peixe? Está vivo ou morto? É peixe; o cheiro é de peixe, esse velho cheiro de ranço, que lembra muito a peixe… [A Tempestade, William Shakespeare].
Algumas pessoas podem ter a rara ‘síndrome do odor de peixe’, conhecida como trimetilaminuria, pela incapacidade em metabolizar a trimetilamina – resultando em um forte odor na urina, suor e hálito. Não tendo cura conhecida o desconforto pode ser minimizado por controle da dieta, uso de alguns antibióticos específicos. Presente na decomposição de peixes a trimetilamina é o alvo de sensores usados na indústria pesqueira para determinar se os peixes estão frescos.
https://www.instagram.com/p/BnGzZjygDX2/

Galantamina
informações sobre a substância  galantaminaA galantamina é um alcaloide que pode ser encontrado na planta campânula-branca; com atividade terapêutica conhecida desde a antiguidade.
Agindo como um inibidor da colinesterase a substância encontra aplicação no tratamento da Doença de Alzheimer. Pelo mesmo motivo a galantamina tem sido estudada como possível antídoto no envenenamento por organofosforados – incluindo armas químicas como sarin, VX, soman e tabun. (Somente faça uso de substâncias com prescrição médica. Nunca faça uso de plantas sem um conhecimento total do que está fazendo).
https://www.instagram.com/p/BnEE79WAXYd/

Esqualeno
usos do esqualenoO esqualeno é um importante composto orgânico visado pela indústria de cosméticos e na produção de vacinas; nas quais funciona como adjuvante em conjunto com surfactantes que melhoram a resposta imunológica. A preocupação de conservacionistas é que uma das fontes mais abundantes do esqualeno é encontrada em fígados de tubarões; gerando sobrepesca de espécies ameaçadas. Felizmente óleos naturais e biossíntese são procedências alternativas.
https://www.instagram.com/p/BnBaYa5FO16/

Óxido de tributil estanho
tinta para casco de navios e suas perigos
O óxido de tributil estanho foi comercializado por muitos anos como um componente em tintas anti-incrustantes para cascos de barcos ou qualquer equipamento que se desejava evitar a aderência de algas e invertebrados.
No entanto um importante problema só foi percebido anos mais tarde; a substância causava alterações sexuais em diversos organismos marinhos. Sendo então banida globalmente a partir de 2008 na Convenção de Roterdã. (Fonte: Chemistry World Podcast).
https://www.instagram.com/p/Bm_DHA6FJhD/

Um assassino de uma cura

boton
Um bóton (ca. 1900) anunciando o Liquozone, anteriormente Powley’s Liquified [sic] Ozone. Liquozone foi lançado como uma defesa contra doenças relacionadas a germes, mas o produto era uma fraude de uma fraude. Como o jornalista Samuel Hopkins Adams observou em sua série ‘The Great American Fraud’ (1905), de Collier, “o oxigênio líquido não existe acima de uma temperatura de 229 graus abaixo de zero. Uma colher congelaria a língua, os dentes e a garganta de um homem antes que ele tivesse tempo de engolir.”

Por mais de um século, a terapia de ozônio tem sido uma fonte de falsas esperanças e ganhos ilícitos dos desonestos.

Em 1903, Nikola Tesla estava ficando desesperado. O prodigioso inventor havia atraído o multimilionário JP Morgan para investir em energia elétrica sem fio, mas até agora as tentativas de Tesla de criar a tecnologia se mostraram infrutíferas.

Quando Morgan se recusou a continuar apoiando o projeto, Tesla implorou ao banqueiro que reconsiderasse:

Eu nunca tentei, Sr. Morgan, dizer-lhe nem um centésimo do que pode ser prontamente realizado pelo uso de certos princípios que descobri. Se você imaginar que encontrei a pedra dos filósofos, não estará longe da verdade.

A resposta de Morgan foi simples: não.

Tesla, com sua credibilidade manchada por sua iniciativa hesitante, precisava restaurar sua reputação e gerar dinheiro. Ele admitiu isso para Morgan: “É absolutamente imperativo para mim lançar algo comercial sem demora”. Então Tesla se voltou para outra de suas invenções. Em 1896, ele havia patenteado o primeiro gerador portátil de ozônio nos Estados Unidos. Após a rejeição de Morgan, o cientista sem dinheiro registrou a Tesla Ozone Company, lançando seus dispositivos como uma maneira de limpar o ar em interiores.

No final do século XIX, moradores da cidade cada vez mais se preocupavam com a “fumaça do mal”, que era produzida pela queima de vastas quantidades de carvão e que se acredita causar doenças. Durante esse tempo, a poluição – uma palavra previamente reservada por Noah Webster para atos carnais “impuros”, tal como emissões noturnas – passou a significar a sujeira humana do ar e da água. Os urbanos pouco podiam fazer sobre o ar sujo fora de suas casas, mas talvez pudessem respirar mais facilmente dentro de casa.

Na verdade, as máquinas de Tesla encheram os quartos de veneno: o ozônio na atmosfera superior fornece um importante escudo contra a luz ultravioleta do sol, mas produza na sua sala e ele prejudicará você.

Hoje, o FDA [Food and Drug Administration; Administração de Alimentos e Medicamentos, em protuguês] declara que o ozônio é um gás tóxico sem fins terapêuticos conhecidos; geradores de ozônio foram aprovados apenas para esterilizar água e equipamentos. Mesmo assim, mercadores inescrupulosos vendem ozônio como uma cura para o câncer e a AIDS. Uma pesquisa na Internet sobre a “terapia do ozônio” mostra que o uso do ozônio está vivo e bem – em purificadores de ar, em pomadas tópicas e em gás soprado no reto.

Como o ozônio, conhecido por ser tóxico, desenvolveu em algum momento uma reputação de ser saudável?


Antes que os humanos descobrissem o ozônio, eles o sentiram. O cientista germano-suíço Christian Friedrich Schönbein notou um odor distinto depois de passar uma corrente elétrica através da água. Em 1840, ele sugeriu que a eletricidade estava criando uma nova substância, que ele apelidou de ozônio – de ozein , em grego, de “cheirar”. (Schönbein estava certo: quando carregado com eletricidade, o oxigênio forma uma molécula instável de três átomos de oxigênio. Essa molécula, o ozônio, também é produzida quando um raio atinge o ar, criando o mesmo cheiro detectado pelo Schönbein no laboratório.)

Desde o início, o ozônio seduziu a imaginação de profissionais e empresários da área médica. Por um lado, cheira a “limpeza”. Quando as gotículas de água se quebram no ar – como durante uma tempestade com raios – o ozônio é criado junto com um cheiro “fresco” associado à chuva.

O cheiro do ozônio despertou interesse em suas propriedades purificadoras, mesmo quando experimentos revelaram seus efeitos nocivos. Em 1874, o químico James Dewar e um colega relataram que, após a exposição ao ar ozonizado, as rãs se tornavam letárgicas, as aves ofegavam, e o sangue dos coelhos perdia oxigênio. Um entrevistado na Nature , apesar de reconhecer que os experimentos de Dewar revelaram um risco de superexposição, continuou a endossar o uso do ozônio nos hospitais, baseado na crença tradicional de que o raio – e, portanto, o ozônio – purificaria o ar. Além disso, alguns entusiastas do ozônio acreditavam (e ainda acreditam) que a molécula pode fornecer melhor ao corpo o oxigênio necessário porque é composto por três átomos de oxigênio, em vez dos dois habituais.

No entanto, até mesmo o descobridor do ozônio reconheceu seus efeitos nocivos. Schönbein relatou que a inalação de ozônio pode causar dores no peito e dificuldade para respirar. Ratos submetidos a uma atmosfera de ozônio morreram.

terapia falsa com ozônio
A ozonoterapia, como foi descrito pelo pioneiro radiologista armênio-americano Mihran Krikor Kassabian, em Röntgen Rays and Electro-therapeutics (1907). Kassabian escreve que a terapia é de “valor primordial, onde sprays ou vapores medicados não podem alcançar a parte por outros meios”. (Fonte: Instituto de História da Ciência)

No entanto, a aura saudável do ozônio persistiu. Em 1911, um ano após a fundação da Tesla Ozone Company, um artigo no Proceedings of the Royal Society of London B maravilhou-se de que os efeitos saudáveis ​​do ozônio “tenham, por mera interação, se tornado parte integrante da crença comum; e, no entanto, a evidência fisiológica exata em favor de seus bons efeitos tem sido quase totalmente insuficientes.” Os autores descobriram que as únicas consequências claras do ozônio são os danos pulmonares e a morte. No entanto, eles ainda aceitavam no potencial positivo do ozônio, especulando que os efeitos benéficos da molécula funcionavam através do olfato.

Havia um sopro de verdade nas conjeturas que rodeavam o ozônio; sua estrutura de três átomos de oxigênio é instável e, à medida que se decompõe, remove os elétrons das paredes celulares e destrói o DNA da célula. Essa propriedade destrutiva torna o ozônio útil para desinfetar a água e, em alguns casos, ferramentas dentárias e médicas. Mas o caos que o ozônio causa às células bacterianas também se aplica ao tecido humano, tornando-o perigoso para a pele em quantidades suficientes para, digamos, limpar as feridas.

Durante a Primeira Guerra Mundial, enfermeiros e médicos usaram o ozônio exatamente para esse fim. A comunidade médica parecia disposta a tentar uma série de métodos de desinfecção para tratar o crescente número de soldados feridos que enchiam hospitais. Médicos do Hospital Militar da Rainha Alexandra, em Londres, usaram o ozônio para tratar feridas e abcessos, aplicando o gás diretamente a ferimentos por até 15 minutos ou até que a carne estivesse “brilhante”.

O Departamento Médico do Exército dos EUA incluiu o ozônio como um “método principal” para desinfetar feridas de guerra em sua história cirúrgica da Primeira Guerra Mundial, e pelo menos um manual de enfermagem da época referia-se a um método alemão de limpeza com ozônio da carne ferida. Mas uma revisão das técnicas cirúrgicas que o Exército dos EUA produziu depois da guerra enfatizou outras técnicas de saneantes, como anti-sépticos com hipoclorito de sódio.

De fato, a irrigação de feridas com anti-sépticos, que se tornaram populares após a Primeira Guerra Mundial, pode ter diminuído a popularidade do ozônio. Os manuais médicos começaram a abordar a terapia do ozônio com ceticismo. Um manual de enfermagem de 1919 refere-se a “falácias populares” sobre o ozônio, sugerindo que seus efeitos benéficos eram menos certos do que seus efeitos venenosos. Na década de 1950, o FDA começou a apreender geradores de ozônio.


Mas os geradores de ozônio nunca desapareceram completamente. E a promessa do ozônio evoluiu para corresponder às reivindicações dos charlatães modernos. Com a infinidade de outros desinfetantes baratos e eficazes no mercado, os vendedores de ozônio estão menos inclinados a enfatizar as qualidades higienizantes de seus produtos. Cura da infertilidade, HIV-AIDS e câncer é o novo campo. Essa metamorfose é tanto resultado do desespero humano quanto do conhecimento de marketing.

Sites que vendem produtos de ozônio quase invariavelmente usam a história para enfatizar sua credibilidade, destacando o envolvimento de Tesla e o uso medicinal do ozônio durante a Primeira Guerra Mundial. Esses sites frequentemente imitam citações acadêmicas incluindo outros links de sites pró-ozônio, criando emaranhados de citações cibernéticas que levam a lugar nenhum.

Os fornecedores equilibram essas tentativas de credibilidade científica com generosas doses de imprecisão. Por exemplo, um site promete “influenciar as membranas celulares e equilibrar os níveis de produtos de peroxidação lipídica”. Essa sequência de palavras pode soar bastante científica, mas é apenas outra maneira de descrever a capacidade do ozônio de infiltrar-se indiscriminadamente nas membranas celulares e matar células – um efeito dificilmente desejável.

O jargão complicado é combinado com a simplicidade sedutora do ozônio – um composto químico do leque do ensino médio. É uma combinação difícil de resistir, já que os compradores são mais atraídos pelo que eles acham que entendem.


Em 2010, a FDA confiscou 77 geradores de ozônio na Califórnia que seriam vendidos como dispositivos médicos por um total aproximado de US$ 80.000. Embora a FDA não colete dados sobre quem compra os dispositivos, evidências sugerem que alguns médicos da medicina alternativa compram geradores de ozônio para suas clínicas, cobrando centenas ou milhares de dólares dos pacientes pela promessa de cura. Nos casos que atraíram a atenção da mídia, os pacientes morreram após receberem terapia com ozônio, em vez de outros tratamentos mais padronizados. Em um caso de 2015, dois médicos homeopatas de Las Vegas supostamente usaram geradores de ozônio para encher uma seringa com solução ozonizada e injetá-la em um paciente, que morreu no processo. Os médicos foram acusados ​​de assassinato em segundo grau e foram condenados a um mínimo de 25 anos de prisão.

Na maioria das vezes, as respostas federais à terapia de ozônio foram silenciadas. A FDA não enviou uma carta de advertência a um fabricante de geradores desde 2012. A Federal Trade Commission (FTC), que tem jurisdição sobre alegações de propaganda enganosa, trouxe sua mais recente ação relacionada ao ozônio em 2000 contra um fabricante de geradores de ozônio sediado no Tennessee. O caso chegou a cerca de US$ 1,5 milhão e impediu o fabricante de fazer futuras alegações sobre a capacidade dos dispositivos de purificar o ar. “É principalmente uma questão de recursos para nós”, disse Richard Cleland, diretor assistente da Divisão de Práticas de Publicidade da FTC. Incapaz de perseguir todas as alegações falsas de publicidade feitas, a FTC tem que avaliar os riscos de saúde e monetários apresentados por um anúncio antes de prosseguir com um caso. Cleland acredita que os anúncios de ozônio estão visando um público relativamente pequeno de entusiastas da homeopatia. “Não tenho certeza de quanto as vendas são para essas empresas”, diz ele. Em suma, o FTC tem mais o que fazer.

Tesla, embora não seja um showman mesquinho, provavelmente ficaria surpreso em saber que os vendedores de ozônio de hoje usam seu breve envolvimento como um fator de legitimidade. Quando se trata de seus geradores de ozônio, Tesla parecia estar livre de ilusões de grandeza. O ozônio não é mencionado em sua autobiografia My Inventions .

Tesla disse a Morgan que ele criaria uma pedra filosofal de sua tecnologia sem fio – uma fonte infinita de riqueza. Mas ele pode ter subestimado o ozônio. Tornou-se seu próprio tipo de pedra filosofal. Através de grandes promessas e mística química, a terapia de ozônio continua a transmutar uma substância básica em ouro.

Texto escrito por Natalie Jacewicz.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘A Killer of a Cure’ com autorização oficial dos detentores dos direitos. Revisado por: Kelly Vargas.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

True Blue: DuPont e a Revolução das Cores

Os coloristas criadores de tendências do Duco Color Advisory Service, da DuPont, foram profetas da revolução das cores, orientando as corporações e os consumidores a escolher os matizes para tudo, desde os pára-lamas dos carros até as bancadas de cozinha.

Em agosto de 1926, Irénée du Pont, vice-presidente da EI du Pont de Nemours and Company, escreveu para Henry H. Bassett, gerente geral da divisão Buick da General Motors Corporation (GM), com uma proposta. Durante o início da década de 1920, a DuPont e a GM, ambas sob a liderança de Pierre S. du Pont, desenvolveram o acabamento Duco, uma laca automotiva de secagem rápida, durável, barata e colorida. Mais recentemente, os coloristas corporativos da DuPont criaram uma paleta distinta para a GM. Agora, o gigante automotivo, que usou o acabamento Duco em muitos de seus carros, estava tentando atrair o colorista de primeira linha da DuPont, H. Ledyard Towle, para sua divisão Fisher Body. Naturalmente, Irénée du Pont respondeu.

Towle dirigiu o Duco Color Advisory Service da DuPont em Nova York, recebendo pedidos de empresas automobilísticas e aconselhando-as sobre estilo e cor. O serviço de consultoria aprimorou a reputação da DuPont como uma empresa confiável que atendia às necessidades dos clientes, ao mesmo tempo em que protegia suas decisões estéticas. Se a Towle fosse partir para a GM, o relacionamento da DuPont com outras montadoras poderia ficar comprometido. Era imperativo que Towle – e os segredos comerciais de Detroit sobre cor – permanecessem na DuPont.

campanha save the surface
Detalhe, anúncio publicitário “Save the Surface”, The Literary Digest, 11 de fevereiro de 1928. (Fonte: Regina Lee Blaszczyk)

As deliberações da DuPont-GM sobre Towle coincidiram com grandes mudanças na prática de design corporativo durante a década de 1920. Empresas que fazem todos os tipos de produtos, de potes e panelas a aviões e automóveis, experimentaram maneiras de aumentar as vendas. Os esforços incluíram publicidade em massa, venda em prestações, mudanças no modelo – e merchandising nas cores. A popularidade da Color como ferramenta de negócios levou a Fortune, a nova revista corporativa do país, a publicar um artigo de 1930 intitulado “Colour in Industry”, descrevendo um “mundo repentinamente caleidoscópico”, no qual a cor funcionava como “um vendedor mestre, um distribuidor extraordinário”. A Fortune deu um nome atraente a essa mudança monumental: a revolução das cores.

Nesse contexto, a DuPont precisava do expertise de coloristas como Towle. Tradicionalmente, a indústria da moda define as tendências de estilo em cores e outras seguem. Interpretar cores da moda para Detroit exigia habilidades especiais. Os coloristas corporativos tiveram que amenizar os tons às vezes escandalosos gerados pelos costureiros parisienses para se adequar aos estilos de vida casuais e aos gostos variados dos americanos. Outra restrição veio de fabricantes, que demandavam um custo/benefício. Fabricantes de automóveis foram pegos entre as eficiências de preto e uma explosão descontrolada de cores dispendiosas. A regra das médias acabou por dominar o grande mercado do consumidor mediano, o maior público de carros coloridos. Os americanos da classe média compartilhavam o desejo de ter padrões de vida mais elevados, mas eram divididos por renda, educação, etnia e classe social. A cor comercial tornou-se uma ferramenta para expressar essa tensão sutil; os coloristas corporativos da DuPont eram os homens que mediavam o terreno.

Inovação Duco
As primeiras cores da Duco se originaram de uma parceria DuPont-GM que canalizou talentos gerenciais, de engenharia e científicos entre as duas empresas. No início de 1922, as empresas começaram a adaptar o Viscolac, um verniz de nitrocelulose da DuPont usado para a pintura de lápis, em uma nova laca, a Duco, adequada para acabamentos de automóveis. Até o início da década de 1920, o único acabamento automotivo durável e barato era o famoso esmalte preto processado em alta temperatura que Henry Ford usava em seu modelo T. Os carros de luxo, como o Cadillac e o Rolls Royce, vinham em uma variedade de cores pintadas à mão, mas mesmo aqueles vernizes desbotavam, lascavam e riscavam. Alfred P. Sloan, que havia se tornado presidente da GM em maio de 1923, acreditava que os consumidores que comprassem carros mais baratos apreciariam uma gama de opções de cores, especialmente se as pinturas durassem. A montadora Oakland Motor Car Company, decidiu pintar todos os sete de seus carros de turismo em 1924 com a Duco; cada um com dois tons de azul, listras acentuadas de vermelho ou laranja. Este tratamento “True Blue” fez sua estréia em Oaklands no Salão do Automóvel de Nova York em dezembro de 1923, concessionárias e consumidores responderam à nova dimensão estética e à promessa de um melhor desempenho técnico. No início de 1924, as os pedidos abundaram nos showrooms da GM; “O Duco se tornou tão popular”, relatou um executivo, “que os clientes agora estão exigindo isso”. Reconhecendo que o Duco era uma sensação, Sloan recomendou que a GM o aplicasse a todos os modelos. Em meados de 1925, as divisões da GM, da Chevrolet à Cadillac, estavam deixando de lado os vernizes e esmaltes testados e aprovados em favor da Duco.

O Duco teve várias vantagens em relação aos revestimentos tradicionais. Os vernizes mais antigos eram escovados em mais de uma dúzia de passos e precisavam de longos períodos de secagem entre as pinturas. O Duco com spray de secagem rápida reduziu os estágios, o tempo de secagem, os custos de mão de obra e o espaço de armazenamento. Vernizes tradicionais ficavam lascados, rachados, craquelados e desbotados; a laca Duco era quase invencível. Tolerava ar, sol, chuva, lama, umidade, calor, frio, água salgada, bactérias, transpiração, sujeira, sabões e detergentes. A maioria dos acabamentos baratos vinham em poucas cores, enquanto a Duco disponibilizou um arco-íris de tons. Junto com a mudança anual de modelo e a compra em prestações, o novo acabamento agregou valor à linha automotiva da GM.

Mesmo antes da estréia da True Blue, os observadores, com os dedos no pulso do mercado dos consumidores, exigiam carros coloridos e populares que correspondessem aos gostos dos consumidores em moda e design de interiores. A revolução das cores que varreu a América nos anos 1920 construiu transições que estavam em andamento há 75 anos. Durante a era dourada, empresas químicas inglesas e alemãs introduziram corantes sintéticos que usinas americanas usavam para fabricar têxteis em uma variedade de matizes permanentes e brilhantes. As impressoras usavam a cromolitografia para gerar cartões comerciais coloridos e cartazes para os anunciantes, bem como fotos decorativas para as casas das pessoas. Até mesmo as ruas comerciais anunciavam novos matizes, já que os supermercados da A&P e da Woolworth adotaram fachadas vermelhas nos estabelecimentos como parte da marca da cadeia de lojas. Essas novidades aguçaram os olhos e aguçaram o apetite pela cor.

O sucesso da True Blue fez com que as indústrias automotiva e química levassem a estética a sério. Fabricantes de tintas como a Egyptian Laca Manufacturing Company e a Valentine and Company, determinados a não serem superados pela DuPont, apresentaram suas próprias tintas, vernizes e lacas coloridas. Além das montadoras, os pintores de oficinas locais adotaram acabamentos de nitrocelulose para repintura de carros. Empresas como Murphy Varnish e Ditzler Color desenvolveram guias cromáticos para ajudar os pintores personalizados a entender os mistérios da cor. Dispositivos que simplificaram a seleção de cores democratizaram as decisões estéticas, que há muito eram atribuídas a artistas e donas de casa. Esses guias mostravam homens, de altos executivos à mecânicos de oficinas, exatamente o que a beleza poderia fazer pelo comércio e como sua gestão adequada poderia estimular as vendas no mercado de automóveis segmentados.

O Serviço de Consultoria da Duco Color
A princípio, a DuPont continuou vendendo a Duco para mais fabricantes de automóveis e oficinas de reparos. No início de 1925, seus clientes incluíam cinco divisões da GM e quatorze outras montadoras. Naquele ano, a DuPont vendeu mais de 3,7 milhões de litros de Duco por cinco dólares cada. Tecnicamente, o Duco superou a concorrência e o futuro parecia brilhante. No entanto, os gerentes da DuPont que conheciam as cores se sentiam desconfortáveis, sabendo que a empresa de produtos químicos precisava acompanhar continuamente a crescente sofisticação dos consumidores.

Em janeiro de 1925, dois gerentes da DuPont discutiram a necessidade da empresa por conselhos práticos sobre a psicologia das cores, como forma de antecipar os grandes modismos das cores. A DuPont deu um salto cromático em outubro de 1925, quando contratou Towle e criou o Duco Color Advisory Service para projetar as mais recentes e desejáveis ​​combinações de cores para a indústria automobilística. Nascido no Brooklyn, Towle estudou pintura no Instituto Pratt e na Art Students League. Durante a Primeira Guerra Mundial, ele aproveitou bem seu treinamento artístico como membro do célebre Corpo de Camuflagem do Exército dos EUA. Depois disso, adaptou-se ao crescente mundo da publicidade, trabalhando sequencialmente como diretor de arte de três agências de Nova York: HK McCann, Frank Seaman e Campbell-Ewald. Na Seaman ele também atuou como executivo encarregado da conta da DuPont e como executivo de representação da Cadillac, Oldsmobile, La Salle e Pontiac – todas divisões da GM.

Na década de 1920, grandes agências de publicidade de Nova York se autodenominaram como empresas de serviço completo, preparadas para ajudar os clientes a conceituar campanhas, escrever textos, criar obras de arte, projetar produtos, estimular a publicidade e conduzir pesquisas com consumidores. Seus departamentos de arte mostraram aos clientes como aproveitar o apelo das cores em anúncios impressos e projetos de produtos. Nesta capacidade, como Towle recordaria mais tarde em um relatório anual, ele “trabalhou pela primeira vez em cores com a indústria automotiva em 1924”, quando era “o único engenheiro de cores atuando no comércio de automóveis”. O pintor transformado em diretor artístico parecia um ajuste perfeito aos planos da DuPont de racionalizar a incipiente esfera das cores.

Os anúncios da Duco Color Advisory Service em revistas especializadas como Autobody afirmavam que o profissionalismo do serviço ajudou a DuPont a identificar combinações de cores “conhecidas por agradar à média”, que Towle e sua equipe de especialistas em cores souberam “escolher com confiança”. Isso significava amarrar os acabamentos da DuPont às tendências da moda européia, mantendo a Duco a par dos gostos em transformação e projetando esquemas de pintura que melhorassem as formas automotivas.

Para cumprir a primeira missão, Towle viajava para a Europa a cada outono, onde visitou o British Motor Show no Olympia em Londres e o Salon de l’Auto em Paris. Lá, ele estudou os carros novos e as pessoas elegantemente vestidas e relatou ao Duco Color Advisory Service, que os reformatou como um press releases. Os relatórios de Towle sobre a cor circulavam na cultura popular americana, enquanto jornais de todo o país publicavam suas descrições animadas e envolventes. “Toda Paris é louca por cor!” Towle declarou no Tribune Providence no final de 1926. O Grand Palais, que hospedou o Salon, parecia em chamas em laranjas quentes e laranjas queimadas. Em bulevares animados, autos do “haute monde e o demi-monde” rodopiavam em “esquadrões de cores agradáveis… como uma corredeira de montanha no final de um arco-íris.” Às vezes, Towle fazia compras de alta costura, fazendo anotações em desfiles para artigos sobre tecidos da alta costura. No outono de 1926, ele solicitou esquemas de pintura automotiva aos principais costureiros de Paris. Esses figurantes se voltaram para o glamour dos carros americanos: Lucien Lelong combinava tons de verde e pêssego em um roadster, enquanto o brilho de Madeleine Vionnet para carros esportivos a levou a decorar um em “tons de Dekkan Brown e London Smoke”. A lista cresceu enquanto Towle via nuances de cores em todos os lugares; ele entendeu seu lugar no sistema da moda e procurou explicar seu significado.

Por volta das férias de inverno, Towle retornou à Nova York para o National Automobile Show, onde fabricantes de carros americanos exibiram as mais recentes características de engenharia, acessórios, estofados e esquemas de cores. Entre os destaques no show nacional de janeiro de 1926 estavam 12 Lincolns decorados em tons espetaculares adaptados da plumagem de raros pássaros americanos e tropicais: o tanager verde do Equador, o cuco-lobo do Haiti, o pica-pau amarelo da Venezuela e muito mais. Um ano depois, as cores no show foram ainda mais estupendas. A “produção em massa”, relatou Towle no Brooklyn Standard Union e no Pittsburgh Gazette-Times , havia percebido que “todo o país está se interessando mais pelo uso da cor”. As fábricas de automóveis manejaram habilmente os pincéis, exibindo carros com esquemas de dois tons em “belas harmonias atraentes e quentes”. Eles fizeram para-lamas, suportes de janela, coberturas de pneus traseiros e estofamentos para combinar com o resto do carro. Com satisfação, Towle descreveu o National de 1927 como “o ponto alto da harmonia de cores”.

Esse tumulto de cor levou a alguns erros de projeto, e Towle estava ciente destes problemas. Algumas montadoras foram à loucura com as novas cores de nitrocelulose, arruinando bons modelos com trabalhos de pintura imprudentes. Abraçando uma abordagem forma-segue-função, Towle acreditava que um esquema de cores deveria ter alguma relação com a forma do carro. Os melhores trabalhos de pintura, explicou Towle em um artigo da Brooklyn Standard Union em 1927, acentuaram a forma da máquina e ocultaram suas falhas de projeto. “Listras longas e vigorosas ao longo da moldagem da parte inferior” fizeram um modelo “parecer mais longo”. Por que não, Towle postou, passar a faixa na frente do carro? Quando as pessoas se maravilhavam com as novas rodas multicoloridas da National 1927, Towle sugeriu que elas poderiam gostar dos efeitos policromos que acentuavam a forma do carro. Towle era um médico estético com um estetoscópio e um receituário. Seu paciente era a indústria automobilística visualmente ingênua; seu remédio, cor aplicada judiciosamente.

Towle assume as cores da GM
Entre 1925 e 1928, a Towle trabalhou arduamente para colocar o Duco Color Advisory Service em pé firme. Ele ficou com a DuPont em 1926, apesar das aberturas da GM. Em julho de 1928, no entanto, ele aceitou a oferta da montadora líder e mudou-se para Michigan. Lá ele trabalhou como o primeiro engenheiro de cores da GM e provavelmente cofundou sua Seção de Arte e Cor com o extravagante construtor de Hollywood Harley J. Earl.

Como colorista chefe da GM, Towle divulgou uma previsão mensal composta de uma circular animada sobre tendências gerais de estilo e um apêndice estatístico listando as vendas de carros por cor. As circulares de Towle foram além de uma lista básica de cores de carros mais vendidos; suas tabulações detalhadas mostraram que as escolhas do consumidor variavam de região para região e de modelo para modelo. Em uma circular da GM de junho de 1929, por exemplo, ele revelou que 87% dos compradores da Pontiac no Noroeste do Pacífico preferiam tons de azul. No Nordeste, apenas 17% dos compradores de Buick gostaram do azul. As comparações continuaram. Sempre cético, explicou Towle no periódico da Society of Automotive Engineers que ele verificou a opinião dos revendedores em relação ao gosto do público como “revelado nos periódicos, nos jornais e no rádio sobre roupas, móveis de casa e outros artigos”. Suas antenas de moda sempre foram sintonizadas no canal do consumidor. Muito do método de Towle se baseava em fatos concretos, mas muito também dependia da experiência, da intuição e do senso comum.

Towle passou dois anos mostrando à GM como lidar com as questões escorregadias de estilo, moda e bom gosto. Em 1930, porém, ele deixou a GM para retornar à agência Campbell-Ewald, desta vez para o escritório de Detroit, onde se especializou em publicidade ao ar livre, incluindo outdoors e cartazes. Ele estava mais feliz em unir cores, design e publicidade. Em 1934, tornou-se diretor fundador da Divisão de Design Criativo e Cor da Pittsburgh Plate Glass, que criava esquemas de cores para eletrodomésticos, layouts para showrooms e vitrines, novos tons para tintas e vernizes e de publicidade da empresa. Ele permaneceu uma figura importante na revolução das cores e ampliou sua influência com seus projetos para indústria, comércio e arquitetura.

Duco simplificado com cores Munsell
O sucessor de Towle no Duco Color Advisory Service foi outro colorista, Howard Ketcham. Membro da alta sociedade nova-iorquina, Ketcham cresceu em Manhattan e em Long Island e frequentou a prestigiada St. Paul’s School e a Amherst College. De 1925 a 1927, ele seguiu os passos de Towle, trabalhando como diretor de arte de HK McCann enquanto estudava na New York School of Design. Em 1927 ele se juntou ao escritório Duco, onde trabalhou até 1935. Então ele fundou a Howard Ketcham, Inc., uma consultoria de cores no Rockefeller Center.

A Ketcham herdou da Towle um serviço de consultoria de cores que enfatizava o valor de mercado da beleza praticada nas artes industriais. Inicialmente, a Ketcham continuou esses esforços através de um projeto conjunto com a Cheney Brothers, uma fábrica de seda que entendia o sistema da moda. A estratégia de Cheney era centrada em um portfólio de cores de três níveis: “novidades”, ou novos itens sazonais, linhas de “segunda temporada” e “populares”. As novidades de alta moda, desmembradas das previsões de cores da empresa, renderam a maior parte dos lucros. Ao longo dos anos, o diretor de vendas de Cheney, Paul Thomas, foi muito amigo dos interesses da DuPont, fornecendo à empresa previsões de cores para a seda. Agora ele esperava que uma ligação com a DuPont confirmasse o status de Cheney como líder do setor. O Duco Color Advisory Service, por sua vez, esperava aprender algo sobre design e marketing de alto nível.

No final de 1928, a DuPont anunciou um conjunto de cores de carros Duco com base na previsão de Cheney para o outono seguinte. Incluía a Red Shadow Red, “um vermelho amarelado adequado para uso com marrom ou bege, como uma cor aros ou para listras,” e Sea Bubble, “um bege natural desenvolvido pela indústria da seda que recebeu grande aceitação no mercado comercial têxtil, bem como na indústria automotiva. ” Havia também as cores Pewter Pot, Blu-Gray, Gray Gull, Bay Tree, Verdancia, Water Glo e Lei Orange. A paleta de Cheney-DuPont continuou a missão da Towle de aumentar o capital cultural da DuPont com linhas de alta classe.

Mas embora Ketcham reconhecesse a importância das artes industriais, este colorista da DuPont também adotou as práticas da profissão de engenharia (mais tarde ele foi chamado de pai da engenharia de cores). Alarmada com o portfólio de 7.500 cores da DuPont, a Ketcham simplificou a razão de ser do Serviço de Consultoria da Duco Color. O truque estava em determinar quais cores ressoavam na classe média, de modo a melhorar a eficiência e aumentar as vendas. Em seus oito anos como colorista chefe da DuPont, Ketcham se concentrou em racionalizar as previsões de cores e reduzir radicalmente a paleta Duco.

O primeiro passo da Ketcham foi criar o Automobile Color Index, uma análise quantitativa mensal das vendas da Duco. Essa ferramenta de previsão híbrida deve seu rigor analítico à Towle e à GM e seu respeito pela moda à Cheney. Emulando Cheney, Ketcham dividia as cores Duco em três grupos: padrão, estilo e popular. Começando no verão de 1929, Ketcham rastreou esses três grupos e mediu a ascensão e queda de famílias de cores, tais como vermelhos, marrons e amarelos. Sua pesquisa revelou como a Grande Depressão afetou os hábitos de compra dos consumidores. Em 1933, o preto estava de volta aos negócios, um grande desafiante para o azul. O Automobile Color Index resumiu essas tendências em tabelas e gráficos elaborados e exibiu o conhecimento estatístico do novo colorista chefe da DuPont.

Em seguida, a Ketcham lançou o tributo completo da DuPont à engenharia de cores: Duco Calibrated Colors, uma paleta de 290 matizes cuidadosamente selecionadas. Em 1932, as empresas americanas de pintura tinham 11.500 cores automotivas diferentes em seus inventários. Não havia lógica por trás desse crescimento, decorrente da falta de planejamento. Muitos fabricantes de laca ainda ofereciam cores que ninguém encomendou há vários anos. Mas o maior problema está nas práticas de fabricação. Alguns produtores acharam difícil controlar reações químicas em suas fábricas, gerando “até 80 variações de uma cor original”. As montadoras de carros atarefadas exacerbaram o problema quando aceitaram os lançamentos off-color. As coisas também pioraram quando as empresas de automóveis trocaram os fornecedores de tinta, que tentaram, sem sucesso, igualar as cores dos concorrentes. O resultado final foi um número crescente de incompatibilidades.

Ao criar as Cores Calibradas Duco, a Ketcham adotou o prático sistema de medida de cor da Munsell Color Company para descrever matiz, valor e croma. Enquanto Towle apoiava uma psicologia da cor, Ketcham enfatizou fatos concretos. Escrevendo para o comércio de tintas, ele descreveu uma harmonia de dois tons de maneira simples e direta: “Cor prevalente um marrom claro. O caráter de tal marrom pode ser melhorado através do uso de luz, verde azulado claro como uma ênfase de listras. O marrom é na realidade um fraco tom de vermelho. O verde azulado é o complemento do vermelho. O uso de uma cor com seu complemento tende a intensificar as duas cores”. Essa linguagem de eficiência tinha valor de mercado. O uso do sistema Munsell por parte da Ketcham refletia a nova percepção da Duco de que a cor podia ser domada, controlada e empacotada.

Ironicamente, o plano de simplificação de Ketcham se enquadrava diretamente nas artes industriais, onde Albert H. Munsell fez sua pesquisa pioneira. Durante a década de 1920, o Laboratório de Pesquisa Munsell e a Munsell Color Company realizaram pesquisas fotométricas com o Bureau of Standards e divulgaram seu sistema entre escolas e empresas. Entre 1928 e 1930, Walter M. Scott, antigo químico-chefe de Cheney, trabalhou como diretor de serviços da Munsell Color Company. Scott usara o sistema Munsell na usina de seda de Cheney, o que levou a sua entusiástica promoção dele como uma ferramenta estética para os negócios. No início da década de 1930, o método prático de medição de cores de Munsell estava rapidamente se tornando o padrão aceito nas artes industriais, e Ketcham provou ser sábio ao adotá-lo para a DuPont.

Nos 10 anos entre a chegada de Towle e a partida de Ketcham, a DuPont experimentou uma notável transformação na prática de cores. Seus temperamentos e técnicas diferiam, mas ambos tinham pressupostos comuns e reconheciam a responsabilidade fundamental do colorista no mercado dos compradores. “É tão caro estar muito à frente da tendência de cor quanto não é lucrativo ficar para trás”, escreveu Ketcham na revista Industrial Finishing. “Então, o fabricante ou revendedor que deseja atender os mercados quando eles iniciam faz bem em determinar antecipadamente a escolha das cores pelo público.” Os coloristas experientes aprenderam, assim, a seguir as pistas do mercado, observando as mulheres vestindo vestidos de Paris ou analisando as vendas de Buicks azuis. Eles foram, em suma, “obrigados a manter-se a par da consciência de cor do consumidor”.

Porquê True Blue importava
A história da DuPont e a revolução das cores revelam muito sobre o funcionamento interno do sistema de moda durante a era moderna. A DuPont descobriu que não havia nada de fácil nos negócios da moda. Os homens do mercado de tintas achavam difícil mensurar o consumidor feminino instável e volúvel. No final, a DuPont seguiu o comércio têxtil, que, como outras indústrias de produção em lotes, aperfeiçoou um sistema de mediação do consumidor. O gigante químico em crescimento até adotou o sistema de cores Munsell mais favorecido nas artes industriais.

Conforme a DuPont padronizou a paleta Duco, a empresa ajudou a estabelecer novas regras básicas para a inovação de design em bens duráveis. Em meados da década de 1930, as escolhas de cores Duco incorporavam os gostos no grande meio-termo – o mercado de massa – enquanto permitia variações. Blue agradou aos conservadores, mas o popular vinha em muitas listras. Além do True Blue, havia centenas de outros ‘blues’ [azuis], todos voltados para a variedade de gostos populares. Essa seleção permitiu aos consumidores da classe média sinalizar as diferenças entre si.

A proliferação de sistemas de previsão chega ao cerne da questão. Não havia uma maneira melhor de prever o apelo das cores com precisão, porque não havia um gosto único ou uma única categoria de produtos. No entanto, seja nos têxteis ou nos automóveis, as paletas como um todo tinham apelo popular, e as cores individuais tinham um pouco de distintividade. Cada um foi projetado para trabalhar com uma linha específica de produtos. Uma mulher pode usar um terno Rosa Choque de Elsa Schiaparelli por décadas, mas um carro Fire Red ficava logo cansativo. Cópias exatas de cores de alta costura pareciam estranhas em para-lamas, portas e estofados. Homens como Towle e Ketcham explicaram por quê. Quando os coloristas industriais falavam, as corporações ouviam e, em meados da década de 1930, os especialistas em cor tinham uma posição na cultura empresarial americana.

Este artigo baseia-se na pesquisa de um novo livro,The Colour Revolution, financiado pela Edelstein Fellowship da CHF e pela National Endowment for the Humanities Fellowship for 2007–2008.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘True Blue: DuPont and the Color Revolution’ com autorização oficial dos detentores dos direitos. Revisado por: Kelly Vargas.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

A ciência da satisfação

fonte da imagem Flickr usuario Peter Thoeny
O sabor intrigante do caldo dashi levou ao químico japonês Kikunae Ikeda a isolar o umami. Apesar de ter sido descoberto há quase um século, o sabor ainda é um mistério.

Um gourmand japonês descobre o quinto elemento do sabor.

A pergunta parecia bastante simples: qual é o sabor dessa sopa? Kikunae Ikeda, um químico japonês, fez a si mesmo essa pergunta enquanto comia um de seus pratos favoritos, um caldo chamado dashi. Ele considerou cada um dos quatro componentes básicos do sabor, um a um – doce, amargo, salgado, azedo. Mas para sua surpresa, nenhum deles se encaixou. Ele podia sentir algo mais no dashi, algo além do quarteto usual. Mas o que? Essa pequena e incômoda questão logo revolucionária a compreensão científica do sabor – e transformaria os paladares dos seres humanos em todo o mundo.

Ikeda veio de uma família refinada – parte de um antigo clã samurai – que havia caído nos tempos difíceis no final do século XIX. Ele teve que vender sua cama para arranjar dinheiro suficiente para a faculdade, e deu aulas de Shakespeare, em inglês, em troca de dinheiro. Ele também era um pouco gourmand, e enquanto avançou em seus cursos de ciência, ele ficou atormentado pela química do sabor, especialmente aquela propriedade não salgada, não azeda, não doce e não amarga que ele sentiu no dashi.

O ingrediente principal de Dashi é uma variedade de kelp chamada kombu; quando Ikeda se tornou professor de química na Universidade de Tóquio, ele decidiu separar o kombu em seus compostos e isolar o sabor do dashi. Ele começou em 1907, fervendo 41 quilos de alga marinha em uma resina de alcatrão. Ele então retirou vários sais e compostos orgânicos nos meses seguintes até colher 28 gramas de cristais marrons. Eles pareciam grãos de areia, mas assim que ele experimentou um deles – bum! Aquele sabor delicioso do dashi irrompeu em sua boca. Análises revelaram que os cristais eram glutamato (ácido glutâmico), e Ikeda chamou esse novo sabor de umami, significando “esplendor” em japonês.

Durante a década seguinte, Ikeda continuou a explorar diferentes aspectos do umami. Primeiro ele procurou o glutamato em alimentos além de alga marinha. Dito e feito, ele encontrou altas concentrações em carne e peixe; queijos, especialmente queijo parmesão; e até no leite materno. (Ele também encontrou em certas plantas, como tomates e aspargos.) Essa descoberta fez sentido: adicionar até mesmo pequenas quantidades desses alimentos a pratos torna-os mais agradáveis e completos.

Este trabalho levou Ikeda a se perguntar por que saboreamos o umami em primeiro lugar. Todos os outros sabores básicos nos alertam para algo bom ou ruim na comida. Em geral, doçura significa energia de carboidratos; salinidade significa nutrição mineral; acidez significa ácidos, que são comuns em alimentos fermentados ou em decomposição; e amargor significa compostos alcalinos, que são comuns em plantas venenosas. Então, o que o umami sinaliza? Proteínas. O glutamato é um aminoácido, um dos blocos de construção das proteínas. Então, ao desenvolver um gosto pelo umami, os seres humanos poderiam detectar esse recurso escasso. De fato, podemos sentir o gosto do glutamato em concentrações 6 e 16 vezes menores, respectivamente, do que açúcar ou sal, indicando quão importante era encontrar proteína para nossos ancestrais. (Estranhamente, a maioria dos outros aminoácidos tem sabor doce ou amargo para nós, tornando o glutamato a melhor escolha como imitação de proteína). Cientistas no início dos anos 2000 finalmente colocaram a perspicácia de Ikeda em uma posição sólida, localizando receptores especializados em glutamato na língua humana.

Ikeda partiu para comercializar sua descoberta. A maioria dos japoneses na época tinha uma vida difícil como fazendeiros, e suas refeições consistiam basicamente de arroz e legumes. Ikeda pensou que criar um tempero baseado no glutamato tornaria a comida mais saborosa.

Por alguma razão, Ikeda decidiu não usar algas marinhas; em vez disso, ele usou trigo para produzir em grande quantidade o glutamato. Era um trabalho bagunçado e trabalhoso, mas em março de 1909, apenas dois anos depois de iniciar sua pesquisa, Ikeda tinha cristais isolados com 85% de pureza. Os trabalhadores então os esmagavam com martelos, borrifavam um pouco de sal e empacotavam o pó para venda. Ikeda batizou o tempero de Ajinomoto, significando em japonês “na origem do sabor”.

Hoje conhecemos a Ajinomoto por um nome diferente, glutamato monossódico ou GMS. É um dos temperos mais populares no mundo: os seres humanos consomem 2,2 bilhões de quilos por ano em todo o mundo, quase meio quilo por pessoa. (A maior parte do GMS é produzida atualmente usando fermentação bacteriana). E não é de admirar que seja tão popular. Como Ikeda sentiu, o umami satisfaz uma fome profunda dentro de nós. Muitas crianças de hoje aprendem que existem apenas quatro sabores distintos. Mas passe-lhes um pedaço de queijo ou um prato de sopa, e suas línguas lhes dirão outra coisa.

Texto escrito por Sam Kean.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘The Science of Satisfaction’ com autorização oficial dos detentores dos direitos. Revisado por: Kelly Vargas e Kamilla Vera.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

Mais textos:
qual é o gosto de um pouco de DNA?