Tag: alimentos

DDT, ácido butírico, astaxantina e mais

Nossas últimas publicações no perfil @ligacaoquimica no Instagram.
Você pode clicar nas imagens abaixo para obter a versão em maior resolução. O uso não comercial é livre desde que citada a fonte.

Tiopentato de sódio
tiopentato de sódio com informações e estruturaO tiopentato de sódio era um dos principais componentes do ‘soro da verdade’ – que faria com que a pessoa ficasse mais propensa a contar a verdade em um interrogatório investigativo. No entanto o método raramente é utilizado por ser pouco efetivo e pela dificuldade de ser aceito legalmente.
O tiopentato de sódio também era usado nos Estados Unidos como injeção letal na execução de criminosos. Recentemente ocorreu uma falta da substância por restrições na produção e comercialização para este fim.
https://www.instagram.com/p/Bnljlv1gKN-/

DDT
informações e estrutura do DDTO DDT foi inicialmente sintetizado em 1874 com seu alto poder inseticida descoberto em 1939. Por ser muito eficiente e aparentemente inofensivo aos humanos, o DDT foi usado em larga escala – com mais de 1,8 milhão de toneladas produzidas. Em 1962, a bióloga Rachel Carson publicou o livro ‘Primavera Silenciosa’, alertando para o severo desequilíbrio ecológico causado pelo uso indiscriminado do DDT. Resultando em um gradual banimento global do produto. Atualmente poucos países ainda fazem uso do DDT.
https://www.instagram.com/p/BnquGP7lE5b/

Ácido butírico
estrutura e informações sobre o ácido butíricoO ácido butírico tem um cheiro que lembra muito o cheiro de vômito ou de queijo azedo – justamente por ser um dos produtos da fermentação do leite. O curioso é que algumas marcas de chocolate, como a Hershey’s, podem conter pequenas quantidades de ácido butírico – por serem consideradas agradáveis ao paladar americano. Que é removido na exportação para países que não apreciam esse sabor. O ácido butírico também é um dos responsáveis por aquele característico cheiro de cachorro molhado.
https://www.instagram.com/p/Bn3pKF_lXWY/

Astaxantina
astaxantinas em flamingos e salmões
Flamingos, salmões e lagostas têm algo em comum. A presença de carotenóides – principalmente da astaxantina – que garantem belos tons de vermelho. Flamingos e salmões ficam com cores pálidas quando criados em cativeiros; e costumam receber adição de astaxantinas na sua dieta para recuperar a cor. Por ser considerado um poderoso antioxidante a astaxantina é comercializada como suplemento. Cuidado com as falsificações, você pode acabar comprando um simples corante vermelho!
https://www.instagram.com/p/Bn6MgtKgOT9/

Indico também acessar:
Além da Primavera Silenciosa: uma história alternativa do DDT

Aflatoxina B1 e Ferroceno

Aflatoxina B1
informações sobre as aflatoxinasNão é uma boa ideia comer amendoins mofados, pois podem conter fungos do tipo Aspergillus flavus ou Aspergillus parasiticus que produzem aflatoxinas – uma família de compostos com pelo menos 14 substâncias.
As aflatoxinas estão entre as substâncias mais cancerígenas conhecidas; afetando principalmente o fígado. Em maio de 1960 mais de 100.000 perus morreram na Inglaterra após serem alimentados com uma ração contendo amendoim contaminado com Aspergillus flavus. Ressaltando que não necessariamente todo o ‘mofo’ produz aflatoxinas.
Fica a dúvida: Será que as aflatoxinas são eliminadas durante a torrefação do amendoim?
A literatura [1] mostra que a redução na quantidade de aflatoxinas durante a torrefação não é completa; mostrando reduções entre 30 e 83%.
Siga nosso Instagram (@ligacaoquimica)
https://www.instagram.com/p/BmgDdzDDO99/

Ferroceno
informações químicas sobre o ferrocenoO ferroceno é um clássico na química dos organometálicos. A primeira obtenção do composto ocorreu em 1951, de forma não intencional; e sua estrutura de ‘sanduíche’ foi prevista por análises em infravermelho e RMN e depois confirmada em 1954 por cristalografia de raios X. O ferroceno foi um dos precursores no desenvolvimento de sensores para medidas de quantidades de glicose em amostras de sangue.
O ferroceno é também bastante utilizado em eletroquímica, servindo como uma espécie de padrão para verificação e calibração de sistemas, em especial nos processos de voltametrias cíclicas.
Siga nosso Instagram (@ligacaoquimica)
https://www.instagram.com/p/BmdfAtblNAg/

[1]The fate of mycotoxins during thermal food processing ( https://doi.org/10.1002/jsfa.3491 ).

Scientia Vitis: Decantando a Química do Sabor do Vinho

Através de experimentos e da aplicação de novas tecnologias, cientistas da UC Davis estão trabalhando para determinar a composição molecular de um bom copo de vinho.

Pasteur estuda o vinho
Pasteur estuda as doenças do vinho em 1863. (Fonte: Instituto Pasteur)

A adega da Universidade da Califórnia em Davis (UC Davis) está repleta de filas de barris de madeira e garrafas de vinho antiquadas – algumas datando do final da Lei Seca, quando a indústria de vinhos americana teve de começar do zero. Olhe dentro das garrafas mais novas, no entanto, e você verá e experimentará os resultados de quatro décadas de pesquisas modernas sobre o que faz um ótimo vinho. Continuando uma tradição centenária, pesquisadores do Departamento de Viticultura e Enologia da UC Davis estão investigando a complexa dança entre ciência, arte e natureza que cria sabor e aroma no vinho.

A cabine de degustação
No laboratório de Hildegarde Heymann, as cabines de degustação são iluminadas pelo brilho profundo de uma lâmpada vermelha escura. “Damos vinho às pessoas em copos escuros e mudamos a iluminação da sala para tornar a cor das amostras mais difícil de discernir”, diz o professor de enologia da UC Davis. “Queremos que eles se concentrem no que provam e cheiram, não no que veem.” Um especialista de renome mundial na base molecular do aroma, Heymann diz que o sabor do vinho é uma experiência subjetiva e nebulosa que resulta de interações complexas entre muitas classes de compostos diferentes. Moléculas se misturam e coalescem, assim como as notas persistentes de framboesa e amora que permanecem no palato após a amostragem de um característico Shiraz jovem.

“A química que separa um merlot de um pinot noir é quase impossível de identificar”.

Ácidos, açúcares e taninos são os mais óbvios contribuintes para o sabor do vinho, mas essas três classes de moléculas são acompanhadas por um elenco notavelmente variado de moléculas orgânicas – muitas vezes aromáticas – que, em combinação, podem produzir uma surpreendente variedade de sabores. Em geral, sabores frutados são atribuídos a interações entre ésteres, álcoois e ácidos. Os taninos, ou compostos de fenol, dão ao vinho uma sensação adstringente na boca, e os açúcares determinam a doçura do vinho. No entanto, para tornar as coisas ainda mais complicadas, a interação dessas substâncias químicas parece depender das condições de crescimento e das práticas de fermentação.

“A química que define um merlot para além de um pinot noir é quase impossível de identificar”, diz Heymann. “Podem haver mais de 500 diferentes compostos de sabor únicos para cada variedade.” No entanto, Heymann e seus colegas estão tentando conectar combinações específicas de moléculas com sabores familiares. Como duas pessoas diferentes podem provar duas coisas muito diferentes ao provar a mesma garrafa de vinho, Heymann passa xícaras de casca de maçã e molho de soja por meio de janelas de provadores – definições de sabor que todos podem identificar. Em vez de reagentes químicos e gases nocivos, os armários do laboratório de Heymann contêm garrafas de molho de soja e pacotes de chocolate – todos usados ​​como base para comparação. Essa abordagem permitiu aos cientistas traçar algumas das características mais notáveis ​​do vinho até suas raízes químicas.

Moléculas com um Único Sabor
Um nível abaixo da sala de degustação de Heymann, Roger Boulton, professor de viticultura, conduz experimentos com os sulfetos produzidos durante a fermentação, cercados por um laboratório cheio de espectrômetros, cromatógrafos e outros equipamentos analíticos tradicionais. “Após 2.000 anos de produção de vinho, apenas algumas moléculas foram correlacionadas com um sabor específico”, diz Boulton. Um exemplo em que uma conexão direta foi estabelecida, ele explica, envolve metoxipirazinas, uma família de moléculas que fazem o vinho ter um sabor como o pimentão.

Metaxipirazinas foram inicialmente vistas desempenhar um papel no sabor do vinho em 1975, diz Boulton. São agora entendidas como particularmente importantes nas uvas cabernet. Embora quantidades vestigiais da molécula sejam consideradas aceitáveis, o excesso pode sobrecarregar o vinho, produzindo um forte sabor vegetal. Heymann e seus colegas mostraram que a molécula se quebra sob a luz, e os viticultores agora estão experimentando práticas crescentes que expõem as uvas a mais luz do Sol, na tentativa de minimizar a presença do produto químico. As folhas são retiradas das plantas, que são então comparadas a grupos de controle que crescem com cobertura de folhas. Até agora, os testes de sabor mostraram que o sabor de suco de pimentão pode ser alterado, modificando as condições de cultivo. “As pessoas podem identificar a diferença”, diz Heymann. “A maneira como você cultiva as uvas é absolutamente importante”.

Ainda, de acordo com Boulton, a conexão do gosto a uma molécula em particular é rara. Para mostrar que a metoxipirazina estava envolvida no sabor, primeiro tinha que ser isolada, então um receptor no nariz tinha que ser identificado. Finalmente, os painéis de provadores tinham que demonstrar que os vinhos com níveis mais altos de metoxipirazina tinham um cheiro diferente dos que não tinham. Cientistas em busca de moléculas de sabor no vinho raramente são capazes de passar por todos esses testes.

Um dos problemas mais difíceis na identificação da fonte molecular do sabor é que muitos dos compostos suspeitos têm limiares de detecção surpreendentemente baixos. No caso da metoxipirazina, por exemplo, o sabor é perceptível em 2 partes por trilhão. Como diz Heymann, apenas algumas gotas de metoxipirazina em uma piscina seriam suficientes para fazer você pensar que estava nadando em suco de pimentão. “Todos os sabores com os quais estamos lidando são muito baixos em concentração e, analiticamente, nem sempre sabemos sua identidade”, diz Boulton. “Isto é especialmente verdade com os vinhos tintos.”

Um dos problemas mais difíceis na identificação da fonte molecular do sabor é que muitos dos compostos suspeitos têm limiares de detecção surpreendentemente baixos.

Como muitas das moléculas de sabor no vinho são bastante potentes, o nariz pode detectar quantidades muito pequenas. Infelizmente, o equipamento de química usado no laboratório não é tão sensível quanto o nariz humano.

Apenas um punhado de outras moléculas foi ligado a um sabor distinto. Aldeídos voláteis de cadeia curta, como hexanal, pentanal e nonanal, contribuem para os sabores gramíneo, tipo-noz e laranja-rosa, respectivamente. Os terpenos específicos mostraram conferir ao Riesling seu aroma único. Crê-se que os glicosídeos das uvas cabernet sauvignon e merlot cheiram a figo, tabaco e chocolate, mas os sabores não foram correlacionados com um composto específico. Às vezes uma molécula é associada a um local específico, como é o caso do 3-mercapto-hexan-1-ol, um tiol que produz um rico sabor cítrico nos vinhos Sonya Blanc da Nova Zelândia: “Você pode fazer esse estilo em outros países usando as mesmas uvas ”, explica Heymann,“ mas é muito mais difícil e não tem o mesmo sabor”.

O básico: taninos, ácidos e açúcares
Como as moléculas responsáveis ​​por sabores específicos são elusivas, muitas pesquisas sobre vinhos e sabores se concentraram no papel dos ácidos, taninos e açúcares. Os especialistas há muito aconselham os clientes a considerar os níveis de tanino ao combinar o vinho com os alimentos. Na Pure Food and Wine, um restaurante de alimentos crus na cidade de Nova York, o sommelier Joey Repice busca vinhos orgânicos artesanais com uma estrutura bem equilibrada de taninos para acompanhar os sabores delicados das entradas vegetarianas frescas. “Há muitas sutilezas com a nossa culinária, e vinhos com muita estrutura muscular e tanina melhoram com refeições de carne”, diz Repice. Para pratos de carne, ele recomenda vinhos italianos conhecidos por terem uma boa estrutura de taninos – talvez um Barbaresco.

Os taninos são polímeros de fenóis que se escoam das cascas da uva durante a fermentação. Às vezes eles são pensados ​​para fornecer clareza, mas muitos podem causar uma amargura, às vezes conhecida como o “fator enrugador” [adstringente]. Embora os taninos sempre tenham desempenhado um papel fundamental no vocabulário dos especialistas, os cientistas não estão convencidos de que as moléculas estão relacionadas ao sabor. “O sabor pode ser rastreado até uma molécula interagindo com um receptor de cheiro, e os taninos não fazem isso”, diz Boulton. Em vez disso, os taninos se ligam temporariamente a proteínas genéricas na superfície das células da boca. Eles também mudam a textura e a viscosidade das proteínas na camada de saliva que reveste a língua, tornando-a menos fluida e escorregadia. Embora os taninos sejam lavados com água, há um impacto imediato em toda a boca quando você toma um copo de vinho rico em tanino. Com exceção da catequina e epicatequina – dois taninos que se comportam como moléculas de sabor – os fenóis geralmente não têm como alvo um receptor específico. A sensação seca de pungência da boca, associada a taninos – às vezes comparada à romã ou à polpa de limão – está mais relacionada a uma sensação adstringente do que a um sabor amargo.

Similarmente, acredita-se que os ácidos contribuam para a acidez, mas seu papel na criação de sabor permanece discutível. “Quando você muda a acidez de um vinho, a aspereza muda com frequência”, diz Boulton, “mas também há vinhos ácidos que não são azedos”. Boulton sugere que as moléculas de sabor são provavelmente separadas dos ácidos. Embora ele admita que essa hipótese ainda deva ser testada, é provável que a acidez crie um clima no qual moléculas azedas possam fazer sua mágica, diz ele.

Açúcares influenciam quase todos os aspectos de um vinho.

Como os taninos, os ácidos não adicionam diretamente ao sabor, mas influenciam a sensação do vinho na boca. Assim como os taninos contribuem para a clareza geral de um vinho, os ácidos ajudam a equilibrar a doçura e conferem ao vinho uma sensação mais arredondada. A chave – cientistas e sommeliers concordam – é manter os taninos e os ácidos sob controle. “Embora uma acidez sutil seja importante, ela precisa ser equilibrada”, diz Repice.

Açúcares, por outro lado, influenciam quase todos os aspectos de um vinho. No nível mais básico, a fermentação é o processo pelo qual a levedura converte a glicose e a frutose no suco de uva moído em álcool e dióxido de carbono. Controlar a quantidade de açúcar no vinho tem sido historicamente difícil porque a levedura tem um ciclo metabólico complexo e os níveis de açúcar variam dependendo da maturação da uva. No início do ciclo de crescimento, as bagas se expandem porque as células internas se multiplicam e se dividem. Mas à medida que a fruta amadurece, as células individuais começam a crescer, à medida que a água e o dióxido de carbono são convertidos em glicose, frutose e outros açúcares. Os níveis de glicose começam muito mais altos que a frutose, mas à medida que a uva amadurece, a proporção começa a mudar. Eventualmente, se as uvas puderem amadurecer mais, os níveis de frutose ultrapassarão a glicose e as uvas começarão a se transformar em passas.

Embora uvas em passa seja geralmente um mau sinal para os vinicultores, o Sauternes, da França, Trockenbeerenauslesen, da Alemanha, e alguns vinhos de mesa de colheita tardia fazem uso do murchado para atingir níveis de açúcar tão altos que os vinhos permaneçam doces mesmo após a fermentação. Mais tipicamente, porém, o excesso de açúcar faz com que o vinho tenha gosto de doces podres, dominando os sabores sutis que lhe conferem caráter e corpo.

Fermentação e Controle de Tanino
Enólogos têm mexido com sabor de vinho por milênios, variando as variedades de uvas, condições de cultivo e processos de fermentação, mas as práticas modernas associadas com as ciências da viticultura e enologia datam apenas no final do século XIX. Por volta de 1860, o fisiologista francês Louis Pasteur estabeleceu firmemente que a fermentação alcoólica é causada pela levedura. A constatação de que a fermentação era um processo biológico que poderia ser controlado e então produzir resultados previsíveis abriu uma maneira inteiramente nova de pensar sobre a produção de cerveja e a produção de vinho.

Desde então, os cientistas da fermentação fizeram contribuições profundas para uma ampla gama de outras disciplinas científicas. Muitos dos primeiros estudos que surgiram para as áreas de biologia molecular e bioquímica se basearam na levedura como um organismo modelo, e muitos foram motivados por questões sobre a fermentação do vinho, diz Boulton. De testes de cruzamento que testam teorias genéticas para experimentos de sinalização celular, a levedura de cerveja simples (Saccharomyces cerevisiae) continua sendo um dos organismos mais comumente usados ​​no campo da biologia molecular.

A constatação de que a fermentação era um processo biológico que poderia ser controlado e produzir resultados previsíveis abriu uma maneira inteiramente nova de pensar sobre a produção de cerveja e a produção de vinho.

Um importante cientista pioneiro foi Eugene Hilgard (1833-1916), que acabaria por fundar o departamento de viticultura na UC Davis. Nascido na Bavária e criado nos Estados Unidos, Hilgard estudou na Alemanha com importantes pensadores químicos como Carl Friedrich Plattner, Johann Joseph Scherer e Robert Bunsen. Ele retornou aos Estados Unidos, onde sua saúde deteriorada motivou uma mudança de carreira: ele se tornou um defensor das ciências financiado pelo Estado, que o levou a trabalhar ao ar livre, especialmente em levantamentos geológicos e agrícolas. Com Hilgard, a UC Davis encontrou um defensor sincero de pesquisas científicas práticas e aplicadas que beneficiariam a crescente indústria de vinhos do estado.

Como a maioria dos produtores de uvas de sua época, Hilgard acreditava que a cor era um marcador do processo de fermentação. Em um experimento engenhoso, mas pouco conhecido, Hilgard usou um estereoscópio – um dispositivo vitoriano popular que cria a ilusão de profundidade em uma fotografia, apresentando uma imagem ligeiramente diferente em cada olho – para acompanhar o processo de envelhecimento do vinho. O estereoscópio de Hilgard foi projetado por Michel Eugène Chevreul, um químico cujo trabalho com corantes e pigmentos influenciou os movimentos impressionistas e neo-impressionistas. Chevreul observou que o olho naturalmente fundia cores de tons ligeiramente diferentes, permitindo que tons contrastantes emprestassem profundidade e intensidade a uma imagem. Enquanto Chevreul usava o estereoscópio para observar distinções entre objetos em uma pintura ou tecido, Hilgard usou-o para estudar a mudança na cor de um vinho durante a fermentação. Manchas de vinho foram aplicadas ao papel em incrementos durante o processo de envelhecimento. “Você pode comparar o papel com um tecido de uma cor conhecida”, explica Boulton. Assim que o suco de uva verde fermentou, ele mudou para rosa, vermelho e, finalmente, para roxo – um processo que havia sido observado por milhares de anos. “[Os experimentos de Hilgard] avisaram as pessoas quando as transições de cores atingiram o pico, e o vinho poderia ser transformado em barris envelhecidos”, acrescenta Boulton. Como trabalho posterior mostraria, os taninos vazam das cascas da uva no início do processo nos barris. Permitir que o suco assente além deste pico pode resultar em muitos taninos, sem cor adicional. Boulton credita Hilgard como “o primeiro a quantificar esse processo”.

Os métodos de Hilgard estão agora sendo automatizados. Em 2001, Boulton e outros colegas da UC Davis lançaram o Projeto Hilgard – uma rede de transdutores de pressão que monitoram a fermentação em barris pelo mundo. “Como apenas uma safra de uvas pode ser cultivada a cada ano, pode levar décadas para uma vinícola coletar dados suficientes para tirar conclusões reais”, diz Boulton, “[mas] com o Projeto Hilgard estamos compilando dados suficientes para análise real ser realizada.” Os dados são disponibilizados para uso público, e Boulton diz que o escopo em breve será expandido para incluir outros métodos de amostragem. Planos estão sendo feitos para instalar colorímetros e outros sensores que podem ser usados ​​para monitorar os níveis de tanino e a concentração de álcool diretamente. Identificar o limiar em que os taninos param de contribuir para a cor, mas continuam a afetar a sensação na boca, é um objetivo futuro.

Estado da arte
O Projeto Hilgard está introduzindo também medidas quantitativas contemporâneas para outros aspectos da produção de vinho. Boulton instalou sensores de transdutor de pressão em três grandes tanques metálicos na vinícola de ensino da UC Davis para demonstrar que os dispositivos podem substituir as observações padrão rudimentares usadas durante a vinificação em larga escala. “Eles nos permitem monitorar o consumo de açúcar que ocorre durante o processo de fermentação e diagnosticar problemas”, explica ele. O dispositivo destina-se a substituir hidrômetros mais tradicionais – dispositivos flutuantes usados ​​para monitorar a densidade de sucos fermentados. Sendo que o líquido exerce uma força de empuxo igual ao peso do volume deslocado, o dispositivo flutua mais alto no fluido denso. O suco geralmente é mais denso antes da fermentação, quando existem mais sólidos dissolvidos. À medida que o processo de fermentação se completa, os açúcares dissolvidos são consumidos e o hidrômetro começa a afundar.

“Temos leituras mais precisas com sensores”, diz Boulton. Como os sensores do transdutor de pressão estão instalados na parte inferior do tanque, eles fornecem uma leitura geral média do peso do suco. As leituras dos hidrômetros, no entanto, são mais locais e, portanto, muitas vezes causam erros de amostragem – especialmente quando os sucos não são bem misturados. Boulton admite que, em uma base barril por barril, as medições detalhadas provavelmente não levam à produção de um vinho de maior qualidade – o produto final provavelmente não será melhor do que o resultado de um processo que usa um hidrômetro. “A ideia é coletar dados que possam ser usados ​​para entender padrões de larga escala na química de fermentação”, diz ele.

O processo de coleta de dados apoiado pelo Projeto Hilgard faz parte de uma longa tendência em direção à automação e computação. Os biossensores estão sendo desenvolvidos em laboratórios de pesquisa para ajudar a medir ésteres e álcoois em nível molecular, e dados de sensoriamento remoto são usados ​​para estudar os impactos das mudanças climáticas nos vinhedos.

Apesar de todos os esforços para métodos de medição sistemáticos, a estrutura do sabor do vinho não se tornou mais lúcida. Novas moléculas são descobertas no vinho a cada ano, mas muito poucas são vistas desempenhar um papel direto no sabor ou aroma. “Cinquenta anos atrás, as pessoas acreditavam que havia uma molécula que tornava Riesling ou Pinot Noir únicos, mas agora percebemos que é infinitamente mais complicado”, diz Heymann. Mesmo que pesquisas futuras correlacionem aspectos centrais do vinho com moléculas de sabor, as interações sinérgicas entre os principais compostos terão que ser analisadas.

Enquanto isso, Boulton e Heymann encorajam as pessoas a tomar a ciência em suas próprias mãos – talvez transformando a sala de estar ou a mesa da cozinha em um laboratório de degustação de vinhos e implementando alguns dos métodos de teste de sabor de Heymann em casa. “Recomendamos que as pessoas formem grupos, provem vinhos e procurem por identificações”, diz Boulton. “Comece com seus vinhos de frutas favoritos e potes de geleias de frutas diferentes. Qualquer coisa que faça as pessoas pensarem sobre o vinho de uma perspectiva analítica ajuda o campo a avançar”.

Texto escrito por Amy Coombs.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘Scientia Vitis: Decanting the Chemistry of Wine Flavor’ com autorização oficial dos detentores dos direitos. Revisado por: Kelly Vargas.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

A ciência da satisfação

fonte da imagem Flickr usuario Peter Thoeny
O sabor intrigante do caldo dashi levou ao químico japonês Kikunae Ikeda a isolar o umami. Apesar de ter sido descoberto há quase um século, o sabor ainda é um mistério.

Um gourmand japonês descobre o quinto elemento do sabor.

A pergunta parecia bastante simples: qual é o sabor dessa sopa? Kikunae Ikeda, um químico japonês, fez a si mesmo essa pergunta enquanto comia um de seus pratos favoritos, um caldo chamado dashi. Ele considerou cada um dos quatro componentes básicos do sabor, um a um – doce, amargo, salgado, azedo. Mas para sua surpresa, nenhum deles se encaixou. Ele podia sentir algo mais no dashi, algo além do quarteto usual. Mas o que? Essa pequena e incômoda questão logo revolucionária a compreensão científica do sabor – e transformaria os paladares dos seres humanos em todo o mundo.

Ikeda veio de uma família refinada – parte de um antigo clã samurai – que havia caído nos tempos difíceis no final do século XIX. Ele teve que vender sua cama para arranjar dinheiro suficiente para a faculdade, e deu aulas de Shakespeare, em inglês, em troca de dinheiro. Ele também era um pouco gourmand, e enquanto avançou em seus cursos de ciência, ele ficou atormentado pela química do sabor, especialmente aquela propriedade não salgada, não azeda, não doce e não amarga que ele sentiu no dashi.

O ingrediente principal de Dashi é uma variedade de kelp chamada kombu; quando Ikeda se tornou professor de química na Universidade de Tóquio, ele decidiu separar o kombu em seus compostos e isolar o sabor do dashi. Ele começou em 1907, fervendo 41 quilos de alga marinha em uma resina de alcatrão. Ele então retirou vários sais e compostos orgânicos nos meses seguintes até colher 28 gramas de cristais marrons. Eles pareciam grãos de areia, mas assim que ele experimentou um deles – bum! Aquele sabor delicioso do dashi irrompeu em sua boca. Análises revelaram que os cristais eram glutamato (ácido glutâmico), e Ikeda chamou esse novo sabor de umami, significando “esplendor” em japonês.

Durante a década seguinte, Ikeda continuou a explorar diferentes aspectos do umami. Primeiro ele procurou o glutamato em alimentos além de alga marinha. Dito e feito, ele encontrou altas concentrações em carne e peixe; queijos, especialmente queijo parmesão; e até no leite materno. (Ele também encontrou em certas plantas, como tomates e aspargos.) Essa descoberta fez sentido: adicionar até mesmo pequenas quantidades desses alimentos a pratos torna-os mais agradáveis e completos.

Este trabalho levou Ikeda a se perguntar por que saboreamos o umami em primeiro lugar. Todos os outros sabores básicos nos alertam para algo bom ou ruim na comida. Em geral, doçura significa energia de carboidratos; salinidade significa nutrição mineral; acidez significa ácidos, que são comuns em alimentos fermentados ou em decomposição; e amargor significa compostos alcalinos, que são comuns em plantas venenosas. Então, o que o umami sinaliza? Proteínas. O glutamato é um aminoácido, um dos blocos de construção das proteínas. Então, ao desenvolver um gosto pelo umami, os seres humanos poderiam detectar esse recurso escasso. De fato, podemos sentir o gosto do glutamato em concentrações 6 e 16 vezes menores, respectivamente, do que açúcar ou sal, indicando quão importante era encontrar proteína para nossos ancestrais. (Estranhamente, a maioria dos outros aminoácidos tem sabor doce ou amargo para nós, tornando o glutamato a melhor escolha como imitação de proteína). Cientistas no início dos anos 2000 finalmente colocaram a perspicácia de Ikeda em uma posição sólida, localizando receptores especializados em glutamato na língua humana.

Ikeda partiu para comercializar sua descoberta. A maioria dos japoneses na época tinha uma vida difícil como fazendeiros, e suas refeições consistiam basicamente de arroz e legumes. Ikeda pensou que criar um tempero baseado no glutamato tornaria a comida mais saborosa.

Por alguma razão, Ikeda decidiu não usar algas marinhas; em vez disso, ele usou trigo para produzir em grande quantidade o glutamato. Era um trabalho bagunçado e trabalhoso, mas em março de 1909, apenas dois anos depois de iniciar sua pesquisa, Ikeda tinha cristais isolados com 85% de pureza. Os trabalhadores então os esmagavam com martelos, borrifavam um pouco de sal e empacotavam o pó para venda. Ikeda batizou o tempero de Ajinomoto, significando em japonês “na origem do sabor”.

Hoje conhecemos a Ajinomoto por um nome diferente, glutamato monossódico ou GMS. É um dos temperos mais populares no mundo: os seres humanos consomem 2,2 bilhões de quilos por ano em todo o mundo, quase meio quilo por pessoa. (A maior parte do GMS é produzida atualmente usando fermentação bacteriana). E não é de admirar que seja tão popular. Como Ikeda sentiu, o umami satisfaz uma fome profunda dentro de nós. Muitas crianças de hoje aprendem que existem apenas quatro sabores distintos. Mas passe-lhes um pedaço de queijo ou um prato de sopa, e suas línguas lhes dirão outra coisa.

Texto escrito por Sam Kean.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘The Science of Satisfaction’ com autorização oficial dos detentores dos direitos. Revisado por: Kelly Vargas e Kamilla Vera.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

Mais textos:
qual é o gosto de um pouco de DNA?

A química do azeite de oliva

azeite de oliva e a química
O canal ‘Reactions‘ da American Chemical Society (Sociedade Americana de Química) mostra um pouco da química e das maravilhosas propriedades do azeite de oliva.

O interessante é que uma das formas de aumentar a extração do azeite das olivas é com o uso do solvente hexano, e isso é feito em casos nos quais se deseja maximizar a conversão (com uma certa perda na qualidade).

Um dos componentes do azeite de oliva é o ácido oleico, mas normalmente faz parte de uma molécula maior, um triglicerídeo. Um manuseio inadequado durante a colheita e processamento pode levar á quebra dos triglicerídeos com consequente alteração na acidez e diminuição da qualidade do produto.

Veja estas e outras informações no vídeo abaixo.

Vídeo com legenda em português. Veja aqui como ativar a exibição.

Legenda e texto escritos pro Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ).

Obtendo benzaldeído do óleo de amêndoas amargas

procedimento com funil de separção
O canal NileRed mostra no vídeo abaixo como é fácil se obter o benzaldeído partindo de óleo de amêndoas amargas.
estrutura do benzaldeído

O benzaldeído tende a reagir facilmente com o oxigênio no ar resultando em ácido benzóico, portanto mantenha o reagente vedado para evitar a degradação. A remoção dos resíduos de ácido benzóico foram feitas com a adição ao benzaldeído de um pouco de bicarbonato de sódio dissolvido em água. Isso faz com que o ácido benzóico forme benzoato de sódio que se dissolve na água.

Os detalhes de quantidade e do procedimento podem ser vistos no vídeo abaixo.

Vídeo com legenda em português. Veja aqui como ativar a exibição.

Tome cuidado ao realizar qualquer compra de reagentes químicos, em algumas situações pode ser ilegal adquirir um reagente para uso não autorizado – principalmente porque o benzaldeído pode ser utilizado como um precursor na síntese de algum composto ilegal.

O procedimento aqui descrito somente deve ser seguido por pessoas com conhecimento técnico adequado e que façam uso de equipamentos de segurança necessários.

Legenda e texto escritos por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ).