Fios sintéticos

meia de nylon antiga
Uma trabalhadora inspeciona uma meia de nylon em Malmö, na Suécia, em 1954. A introdução de novos tecidos sintéticos após a Segunda Guerra Mundial mudou os guarda-roupas e os estilos de vida das pessoas.[Erik Liljeroth/Nordiska Museet]

As fibras sintéticas não apenas mudaram a indústria da moda; elas mudaram a forma como as mulheres viviam suas vidas.

Em 27 de outubro de 1938, 11 anos de pesquisa envolvendo mais de 230 cientistas e técnicos da DuPont culminaram no anúncio da primeira fibra totalmente artificial do mundo. O braço de publicidade da empresa anunciou que a fibra era derivada de carvão, água e ar. Foi a teoria trazida à vida: uma seda artificial fiada e extraída de cadeias moleculares de comprimento e peso molecular quase infinito. Mal seis meses depois, o nylon, como a fibra passou a ser chamada, ganhou destaque na Feira Mundial de 1939, onde o Wonder World of Chemistry da DuPont apresentou suas últimas inovações para cerca de 1,5 milhão de visitantes.

Em contraste com o rayon semi-sintético, que é feito de fibras vegetais quimicamente modificadas, como o algodão, o nylon possui durabilidade e um suprimento estável de matérias-primas que os químicos podem controlar pela qualidade. A fibra também parecia adequada para uma vasta gama de aplicações do dia-a-dia, de tecidos e colchas a fios, redes de pesca a cerdas de escova. Mas a DuPont escolheu com sucesso as meias como veículo para a estreia mundial do nylon. Enquanto as modelos do Wonder World of Chemistry esticavam e torciam as meias para demonstrar a força e o brilho da nova fibra, nasceu uma sensação na moda.

inspeção de fios de nylon
Um homem agacha-se sob uma máquina de irradiação de fios na fábrica de nylon da DuPont em Seaford, Delaware, ca. Década de 1940 [Fonte: Museu e biblioteca de Hagley]

Em 1949, as caras meias de seda caíram em desuso, e as meias feitas de nylon e um conjunto crescente de fibras sintéticas dominaram o mercado. Esses produtos sintéticos, que posteriormente passaram a incluir acrílico, poliéster e elastano, deram origem a um mercado de moda de massa definida por conjuntos de suéteres e roupas que não precisam serem passadas. No entanto, o surpreendente sucesso do nylon e de suas contrapartes sintéticas obscurece a improvável aliança das indústrias químicas e da moda que apoiaram a revolução da moda do pós-guerra. Essa aliança pavimentou o caminho para que os materiais sintéticos substituíssem e até melhorassem os materiais tradicionais, como seda, algodão e lã, e finalmente se tornassem parte natural da vida moderna.

A Pure Science Division da DuPont, berço do nylon, foi idealizada pelo vice-presidente da empresa, Charles Stine, que no final dos anos 20 convenceu o conselho da DuPont a se afastar da pesquisa com claro potencial de lucro e a alocar US$ 250.000 para pesquisa pura. Tal abordagem não era desconhecida – tanto os laboratórios de pesquisa operados pela General Electric quanto pela Bell Telephone -, mas era raro, assim como a amplitude sugerida por Stine à pesquisa especulativa. Ele cortejou Wallace Carothers e outros químicos a saírem de postos acadêmicos e irem para o laboratório com a oferta de amplo financiamento e pessoal.

Na DuPont, Carothers estava livre para explorar a polêmica teoria de Hermann Staudinger de que os polímeros consistiam de cadeias de moléculas de comprimento quase ilimitado. Depois de testar várias combinações durante o início da década de 1930, Carothers e sua equipe de pesquisa concentraram-se em poliamidas – longas cadeias de carbono, oxigênio, nitrogênio e hidrogênio que podiam ser giradas e desenhadas para produzir fibras elásticas flexíveis.

história do nylon na dupont
Imagens da fábrica de produção de nylon da DuPont em Wilmington, Delaware, 1938 (no sentido horário a partir do canto superior esquerdo). Mike McCall coloca chips de nylon em um funil; os chips serão derretidos, medidos e filtrados antes de serem transformados em filamentos. Um trabalhador não identificado supervisiona a operação de equipamento de tecelagem, que torce fibras de polímero em linhas. Violet Grenda inspeciona meadas de fio de nylon. [Fonte:Joseph X. Coleção Labovsky, Instituto de História da Ciência]

Em 1936, o laboratório de Carothers fiou poliamidas por até 10 minutos, um passo crítico em direção a uma fibra viável. Na medida em que a equipe continuou a desenvolver maquinário e equipamentos para refinar o processo, o grupo de marketing da DuPont começou a explorar aplicações para a nova fibra. Na época, as importações japonesas respondiam por 90% do suprimento de seda crua dos Estados Unidos, três quartos das quais eram usadas ​​para fabricar os mais de 1,5 milhão de pares de meias compradas diariamente pelos americanos. Com a industrialização e a militarização do Japão intensificando tensões políticas de longa data, um substituto interno para a fibra de seda parecia cada vez mais atraente.

A DuPont começou a prototipar meias de nylon em 1938, parte de seu esforço para vender o potencial do nylon aos fabricantes que acabariam produzindo as meias. Para esse fim, a empresa construiu novas máquinas e desenvolveu técnicas de costura especificamente para nylon. Uma dessas inovações foi esticar as meias recém-tricotadas sobre as formas em forma de perna para evitar o encolhimento, pois as meias eram vaporizadas para aquecer e ganhar sua forma e tamanho. Essas meias experimentais, tricotadas em fevereiro de 1939, estrearam pela primeira vez na Exposição Internacional de São Francisco e chamaram a atenção para a Feira Mundial de Nova York no final daquele ano. Logo depois, revistas de moda e pesquisas com consumidores documentaram um entusiasmo generalizado pela firmeza, força e ajuste suave e sem rugas, e o nylon rapidamente se tornou um nome familiar. Na primeira venda pública de meias de nylon em 24 de outubro de 1939, em Wilmington, Delaware, o fornecimento de 4.000 pares esgotou em apenas três horas. A demanda só aumentou depois que as meias de nylon se tornaram disponíveis em todo o país em maio de 1940. Mas em 11 de fevereiro de 1942, as meias de nylon desapareceram do mercado, pois a DuPont direcionava toda a produção de nylon para as necessidades militares, como pára-quedas.

Em 1945, após o término da Segunda Guerra Mundial, a DuPont voltou seu foco para clientes civis, prevendo produção suficiente de nylon para tricotar 360 milhões de pares de meias por ano. (Atrasos técnicos prejudicaram a produção em volume, limitando o número de meias a chegar ao mercado em 1946.) A atenção renovada da DuPont às aplicações de consumo levou à criação de uma verdadeira família de fibras, incluindo poliéster (1946), acrílico (1955) e elastano (1958), todas com nomes de marca acessíveis como Dacron (poliéster), Orlon (acrílico) e Lycra (elastano).

modelo promove meias de nylon
Uma foto promocional da DuPont de 1969 da jaqueta Qiana do estilista Louis Féraud. Qiana, um material de nylon sedoso, era responsável pela maior parte do ousado vestuário de discoteca dos anos 70. [Fonte: Museu e biblioteca de Hagley]

Circunstâncias econômicas, sociais e culturais impulsionaram a rápida adoção e aceitação do nylon e o subsequente acolhimento das fibras sintéticas que se seguiram. Para os fabricantes, a escassez de matérias-primas tradicionais impulsionadas pelo boom do pós-guerra aumentou o apelo de alternativas sintéticas derivadas de gás e petróleo abundantes. Para os designers de moda, a durabilidade, a lavabilidade e a facilidade de cuidar do nylon e de outras fibras artificiais abriram possibilidades criativas que, em última análise, significaram mais roupas e acessórios para a indústria do vestuário fabricar e vender. E para os consumidores, as características únicas do nylon e de outros produtos sintéticos levaram muitos a adotarem essas fibras não apenas como substitutos artificiais das substâncias naturais, mas também como novos materiais.

Durante os anos 50, os tecidos sintéticos ajudaram a satisfazer o apetite do público por novas opções de roupas, após anos de depressão econômica e guerra. Esses materiais foram transformados em meias e anáguas, vestidos de noiva, camisas sociais e calças de esqui. As mulheres eram o principal mercado para essas roupas, que geralmente apresentavam novos detalhes de design, como vincos permanentes, pregas ajustadas pelo calor, resistência a rugas e solidez da cor. Essas roupas trouxeram uma tendência de guarda-roupas e roupas de banho, valorizadas por sua facilidade e conveniência. Tais características de desempenho atraíram especialmente as mulheres mais jovens que, em pesquisas de opinião da DuPont, lamentaram o trabalho diário de engomar e adotaram um estilo de vida mais despreocupado e moderno. Não é por acaso que, entre 1950 e 1956, as vendas de máquinas de lavar nos Estados Unidos mais do que triplicaram. Tais qualidades poupadoras de mão de obra estimularam ainda mais a aceitação pelos consumidores das fibras sintéticas e da própria química, que forneciam cada vez mais o que a natureza não podia.

Uma vez que os fabricantes e consumidores adotaram os sintéticos, não havia como voltar atrás. A revolução que começou com o nylon deu origem a novas silhuetas, texturas e cores impossíveis de criar com fibras naturais e continuou a moldar os gostos dos consumidores nas próximas décadas.

Texto escrito por Hillary S. Kativa, coradora da coleção de fotografias e vídeos do ‘Science History Institute’.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do texto ‘Synthetic Threads’ originalmente publicado na revista Distillation Magazine. A tradução foi gentilmente autorizada pelos detentores dos direitos. Revisão feita por: Larissa Gomes e Kelly Vargas.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

Obtendo benzaldeído do óleo de amêndoas amargas

procedimento com funil de separção
O canal NileRed mostra no vídeo abaixo como é fácil se obter o benzaldeído partindo de óleo de amêndoas amargas.
estrutura do benzaldeído

O benzaldeído tende a reagir facilmente com o oxigênio no ar resultando em ácido benzóico, portanto mantenha o reagente vedado para evitar a degradação. A remoção dos resíduos de ácido benzóico foram feitas com a adição ao benzaldeído de um pouco de bicarbonato de sódio dissolvido em água. Isso faz com que o ácido benzóico forme benzoato de sódio que se dissolve na água.

Os detalhes de quantidade e do procedimento podem ser vistos no vídeo abaixo.

Vídeo com legenda em português. Veja aqui como ativar a exibição.

Tome cuidado ao realizar qualquer compra de reagentes químicos, em algumas situações pode ser ilegal adquirir um reagente para uso não autorizado – principalmente porque o benzaldeído pode ser utilizado como um precursor na síntese de algum composto ilegal.

O procedimento aqui descrito somente deve ser seguido por pessoas com conhecimento técnico adequado e que façam uso de equipamentos de segurança necessários.

Legenda e texto escritos por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ).

Estricnina: do isolamento à síntese total – parte 1

DOI: 10.1002/chemv.201500031
Author: Klaus Roth
Published Date: 05 Maio 2015
Source / Publisher: Chemie in unserer Zeit/Wiley-VCH
Copyright: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Reproduced with permission.

Tradução autorizada do texto Strychnine: From Isolation to Total Synthesis – Part 1
noz de nux vomica
Durante séculos, químicos fascinados pela extrema toxicidade de certas plantas se interessaram em estudar os vários compostos que elas contêm. Nux vomica (“nozes venenosas”, também conhecidas como “botões de Quaker”, da espécie Strychnos nux vomica, e nossa principal fonte de estricnina) provaram ser particularmente “nozes duras de roer”, e propiciaram a gerações de químicos – incluindo vários vencedores do Prêmio Nobel – um momento difícil em problemas de isolamento, determinação de estrutura e finalmente a síntese total.

Aqui olhamos para trás com orgulho em algumas das proeminentes realizações a este respeito, permitindo-nos talvez sermos contaminados com um pouco do entusiasmo dos químicos orgânicos sintéticos dos nossos dias, à medida que procuram formas cada vez mais curtas e elegantes de preparar a estricnina e outros materiais complexos.

1. Química de produtos naturais
Ervas medicinais e plantas venenosas sempre exerceram um fascínio mágico, levando médicos, naturalistas, farmacêuticos e químicos ao longo dos anos à estudá-las, na tentativa de decifrar mais os segredos de seu modo de ação. Embora tenha sido possível isolar e investigar componentes puros de plantas por quase 200 anos, o campo continua a ser altamente produtivo; de fato, novos produtos naturais são descobertos e têm suas estruturas estabelecidas quase diariamente. Muitos acabam se tornando, diretamente ou com ligeira modificação química, em agentes farmacológicos ou pelo menos apontam o caminho para famílias potencialmente eficazes de compostos [1,2].

A verdadeira química dos produtos naturais teve seu início em 1805 com o isolamento da morfina do ópio da papoula (Papaver somniferum) pelo farmacêutico alemão Friedrich Wilhelm Sertürner. A firma de E. Merck em Darmstadt, Alemanha, comercializou o processo de isolamento e começou a vender a morfina como a primeira substância medicinal na forma de um material puro e natural em 1827. Isso também possibilitou pela primeira vez oferecer dosagens precisas de um agente ativo natural: um marco na terapia medicamentosa.

Impulsionados por essa conquista, substâncias ativas adicionais baseadas em plantas, altamente eficazes, foram logo isoladas, uma lista que chama a atenção para um passeio pelo armário de venenos de um farmacêutico (Tabela 1). Todos esses materiais seriam classificados como “naturais”, embora muitos deles, como indicado, sejam mais tóxicos do que o cianeto de potássio.

Tabela 1. Primeiros ingredientes ativos isolados de plantas medicinais e venenosas [3,4].

princípios ativos em vegetais

* O valor de DL50 em mg / (kg de peso corporal) representa a quantidade da substância em questão que fará com que metade dos animais de laboratório morram.
** “Veratrina” é uma mistura de vários alcalóides da planta Veratrum, em particular veratramina e cevadina.

Do ponto de vista científico, uma dessas substâncias vegetais domina acima de todas as outras: a estricnina. Desde o seu isolamento em 1818 por Pierre Joseph Pelletier e Joseph-Bienamé Caventou, nenhum produto natural foi estudado de forma tão intensiva. Apesar do fato de que sua grande estabilidade química torna o isolamento da estricnina de “nozes venenosas” um assunto bastante fácil, a determinação de sua estrutura se mostrou extremamente desafiadora. Antes de nos aprofundarmos nos estudos estruturais e sínteses subsequentes da estricnina, no entanto, vale a pena gastar um pouco de tempo observando mais de perto as bênçãos e maldições associadas ao composto, e com sua fonte, a comum “árvore de estricnina”, Strychnos nux. vomica .

2. Strychnos nux vomica e suas sementes venenosas
2.1. Sementes de Nux vomica

Em cada uma de suas frutas amarelas ou laranjas, a “árvore de estricnina” tem de duas a quatro sementes redondas, semelhantes a botões, que são chamadas de “nozes venenosas” ou “botões de quakers” devido à sua forma e caráter característicos (Fig. 1).

noz de nux vomica
Figura 1 As sementes da estricnina ou da “noz venenosa”.

A árvore estricnina típica, uma perene nativa do Sri Lanka, da Índia, do Tibete, do sul da China, do Vietnã e do norte da Austrália, agora é cultivada também na África ocidental e no sudeste da Ásia. A fruta aproximadamente do tamanho de um damasco contém de 2 a 4 sementes com um diâmetro de 1 a 2 cm. Eles são considerados muito decorativos e comumente utilizados, diretamente ou após o tingimento, em jóias africanas ou indianas. Referir-se a essas sementes como uma “noz” é, de fato, enganoso, uma vez que, apesar de seu tamanho, sua fonte é, na verdade, uma baga; a designação “nux vomica” também é enganosa, uma vez que consumir as sementes raramente provoca o vômito.

A natureza altamente venenosa dessas sementes (seu teor de estricnina pode chegar a 3%!) foi reconhecida há muito tempo e logo explorada. Sementes moídas têm sido freqüentemente usadas em iscas tóxicas destinadas a ratos e outros roedores, e também espalhadas como uma defesa contra espécies contaminadas com raiva. Desde o início do século XVII, o pó venenoso era comumente encontrado nas farmácias. Dada a natureza humana, dificilmente seria uma surpresa que um veneno altamente acessível e altamente eficaz não fizesse parte de um grande dose de uso impróprio, de modo que uma ocasional disputa de herança, caso dramático de ciúme ou tragédia semelhante possa ter se tornado sujeita a resolução súbita de uma forma mais ou menos discreta [5,6].

2.2. Toxicidade da estricnina
A alta toxicidade da estricnina se deve à sua interferência na função dos neurônios. A excitação e a desativação de neurônios são controladas de maneira muito específica pela liberação de agentes de sinalização química (neurotransmissores) que a atividade descontrolada de neurônios é essencialmente descartada. Um desses neurotransmissores é o aminoácido glicina, que atenua a excitabilidade dos neurônios através da ligação aos receptores de glicina localizados nas superfícies celulares. A estricnina funciona como um antagonista; isto é, desloca a glicina dos receptores sem desencadear simultaneamente o seu efeito de amortecimento. Os neurônios tornam-se assim extremamente rapidamente – e incontrolavelmente – excitáveis.

No caso do envenenamento por estricnina, a atividade descontrolada dos neurônios da medula espinhal resulta em contração máxima simultânea dos músculos flexores e extensores de uma articulação. Ataques catalépticos na musculatura poderosa do pescoço, costas e mandíbula são excepcionalmente dolorosos. Os músculos relaxam somente após um a dois minutos, apenas para se contrair novamente alguns minutos depois, ao menor estímulo. Uma vítima permanece plenamente consciente durante todo esse episódio; a morte ocorre como resultado do esgotamento total ou cessação da respiração como conseqüência de cãibras na musculatura respiratória.

2.3. Propriedades medicinais
Foi Paracelso quem observou em 1585: “Todas as coisas são venenosas, e nada está livre de veneno; só a dose faz com que algo não seja venenoso”. Consistente com essa observação, as propriedades medicinais já foram atribuídas, até mesmo, às “nozes venenosas” e à estricnina que elas continham – em doses adequadamente pequenas! Assim, em 1785, Joseph Jacob Plenck, o fundador da dermatologia moderna, enalteceu o “pó de noz-venenosa” como uma verdadeira droga milagrosa: um analgésico, restaurador, necessário em casos de disenteria e frenesi, para mordidas de cobras e contra vermes, peste e as dores da cólica. Em 1803, Johann Friedrich Gmelin, médico e botânico, acrescentou à lista malária, histeria feminina, epilepsia e corrupção geral dos fluidos corporais.

Essas promessas levaram a “nozes venenosas” pulverizadas – e à estricnina, depois de 1828 – a tornar-se um dos ingredientes mais desejados (e economicamente lucrativos) para aqueles “tônicos” universalmente populares. Com base na noção de que “a dosagem é o que importa”, a substância venenosa estricnina continuou a ser comercializada como ingrediente tônico até o século XX.

Remédios caseiros como esse, vendidos em garrafas, deviam ter um sabor horrível, porque a estricnina é uma das substâncias naturais mais amargas conhecidas – mas isso não interferiu no sucesso de tais tinturas fortificantes. Pelo contrário: o amargor extremo foi aparentemente considerado uma indicação de qualidade.

2.4.1. Agente de doping
Os tônicos contendo estricnina eram populares até o século 20, e já em 1900 eles também eram usados ​​erroneamente pelos aspirantes a atletas como substâncias legais de doping. Um exemplo bizarro envolveu a lendária maratona dos Jogos Olímpicos de 1904 em St. Louis, MO, EUA. O vencedor final, Thomas Hicks, foi tão abastecido durante a corrida com um brandy “revigorante” e estricnina que ao atingir a linha de chegada ele não estava em condições de aceitar sua medalha de ouro, uma ocasião que teve que ser adiada por várias horas.

Esses dois “agentes revigorantes” são visivelmente inúteis para o propósito, além do qual a estricnina é extremamente perigosa. Se Hicks suspeitasse da sorte que tivera em sobreviver à corrida; ele de fato nunca mais participou de uma maratona, embora tenha vivido até a formidável idade de 89 anos [7-9].

Qualquer efeito de melhoria de desempenho para a estricnina seria hoje vigorosamente contestado do ponto de vista médico, mas o composto, no entanto, ainda aparece na lista de substâncias proibidas da Agência Mundial Antidoping – presumivelmente como um exagero de cautela [10]. Um infrator recente foi a russa Julia Smirnowa, considerada culpada de doping com estricnina e banida internacionalmente de toda a competição.

Sendo que remédios caseiros contendo estricnina foram distribuídos em farmácias em grandes garrafas, inadvertidas (ou deliberadas!) overdoses eram comuns. De uma perspectiva atual, é notável pensar quantas pessoas devem ter sido envenenadas, dada a pequena diferença entre uma dose que é modestamente estimulante e outra que é tóxica. É chocante ler, por exemplo, uma receita escrita para o pequeno “Baby Smith” pelo médico canadense Dr. CF Abraham para um tônico composto de estricnina, beladona e bálsamo de Tolu, com a anotação “uma colher de chá a cada duas horas” [11].

Administrar tônicos contendo estricnina para crianças era uma prática bastante comum, no entanto, até o século 20, e até 1976 era considerado necessário alertar os médicos enfaticamente contra esse absurdo perigoso [12]. A estricnina foi banida em 1978 de todas as compilações farmacêuticas europeias [13] e, posteriormente, também não era mais permitida em iscas venenosas, portanto, em essência, ela agora não desempenha nenhum papel na vida cotidiana. Mas espere um minuto!

2.5. Homeopatia
A estricnina talvez não tenha desaparecido completamente, pois para Samuel Hahnemann (1755-1843), o pai da medicina homeopática, “nozes venenosas” estavam entre os ingredientes mais importantes para os remédios homeopáticos. Acredita-se que as preparações contendo estricnina atuam como agentes curativos de doenças do sistema nervoso central e do trato gastrointestinal, bem como no fígado e no sistema musculoesquelético. Além disso, foram recomendados para pacientes com um estilo de vida atormentado e sedentário, ou que sofrem de “dor de estômago, azia, náuseas, vômitos, sensação de estufamento, cólica gasosa, constipação espástica, gastrite, gastroenterite, hemorroidas, angina, cistite, cólicas de três meses, diarreia, febre, parto, gripe, retenção urinária, tosse, cólicas, dores de cabeça, intoxicação alimentar!(ponto de exclamação inserido pelo autor), problemas gastrointestinais, preocupações menstruais, cãibras musculares, sinusite, nervosismo, cirurgias, enjoo, dor nas costas, insônia, constipação, problemas na gravidez, enjoos matinais, tontura, constipação em geral e envenenamento!” (ponto de exclamação novamente inserido pelo autor) [14].

Com esta impressionante lista de sintomas, um preço de mais de dez euros para um pacote de 10 mL de ampolas de 1 mL de estricnina nítrica D30 se justifica [15]. Poder-se-ia facilmente preparar esta mistura D30 com base nas próprias instruções de Samuel Hahnemann:

Para começar, para a “tintura básica”, por exemplo, 25 g de estricnina (como nitrato ou sulfato) são dissolvidas em um litro de água. Este litro de 0,06 molar estricnina “tintura base” que contêm 0,36 · 10^23 moléculas de estricnina. Para preparar a partir desta uma solução de potência D1, 100 mL (= 1/10) de tintura básica é diluída com água até um volume de um litro. Isso corresponde a uma diluição de 1:10 (onde “D” = deca). Este litro na potência de D1 ainda conteria 0,36 · 10^22 moléculas de estricnina. O mesmo procedimento de diluição é depois repetido mais 29 vezes, de modo que um litro da potência D30 resultante contém 0,36 · 10^-7 moléculas de estricnina. É claro que isso é muito pouco, e como podemos supor que, para Hahnemann e seus discípulos – assim como para nós – as moléculas seriam indivisíveis, o valor pode efetivamente ser igualado a zero. Em outras palavras, 100 mL de uma solução de potência D30 não conteria nem uma única molécula de estricnina.

Os defensores da homeopatia estão convencidos de que, apesar da certeza de que tal solução não pode conter mais do que uma molécula do suposto “ingrediente ativo”, ela ainda pode ter um efeito terapêutico. Para ser justo, deve-se ressaltar que os médicos homeopatas não praticam tecnicamente a “diluição”, mas sim a “sucussão”, em que a mistura deve ser vigorosamente agitada a cada passo. Para ser mais preciso – e estritamente de acordo com Hahnemann – cada passo requer “10 batidas vigorosas com a mão, contra um objeto duro, mas elástico, como um livro encadernado em couro”. O processo de “sucussão” é pensado para assegurar que “a energia vital do agente é ativada”, com “sucessões” consecutivas aumentando a potência do remédio.

Deixe-nos aqui ser tolerantes, no espírito do “chacun à son goût” [cada um com seus gostos], uma vez que os remédios homeopáticos pelo menos não causariam danos. Este último foi demonstrado experimentalmente, incidentalmente, por 20 bravos voluntários suíços, cada um dos quais em 5 de fevereiro de 2011, às 10:23 (na Paradeplatz / “Parade Ground” em Zurique), consumiram uma “overdose” de remédio homeopático contendo estricnina [16]. Neste chamado “Desafio 10:23”, todos os participantes simultaneamente engoliram um pacote inteiro de Strychninum nítrico D30. Nenhum dos participantes subseqüentemente mostrou qualquer sintoma de uma overdose ou um efeito colateral relevante. Até hoje, nenhum discípulo da homeopatia parece ter oferecido uma reação pública aos resultados.

2.6. Arma do crime
Além de aplicações médicas sem sentido ou, pelo menos, questionáveis, a estricnina tem sido, acima de tudo, uma fonte rica de estímulos para a imaginação dos escritores de mistérios. De Agatha Christie aos mais recentes dramas de TV, muitos personagens fictícios foram “terminados” com estricnina. No entanto, na vida real as coisas são muito diferentes. Para começar, hoje a estricnina é difícil de encontrar. Além disso, quase todas as vítimas em potencial de comida com estricnina certamente cuspiriam tudo, por ser terrivelmente amarga. Além disso, como provavelmente será óbvio para o espectador de apenas dois episódios de qualquer série de TV que lida com medicina forense, o envenenamento por estricnina é imediatamente reconhecível pela postura espantosamente contorcida do corpo do cadáver, juntamente com seu distintivo sorriso sardônico. Além disso, a estricnina é excepcionalmente estável, por isso é facilmente detectável em um corpo exumado, mesmo anos depois. Em outras palavras, não é sensato considerar o uso de estricnina como arma do crime.

Essa visão sóbria ainda não deve nos impedir de nos maravilharmos com as muitas situações ilusórias e inteligentes que os romancistas criaram para impedir que uma vítima intencional perceba a presença de uma substância horrivelmente amarga em sua comida ou bebida. Agatha Christie bolou um assassinato especialmente planejado em “O Misterioso Caso de Styles”, seu primeiro mistério de assassinato. Isso foi criado na Inglaterra vitoriana e envolvia o que na época era um remédio caseiro comum contendo estricnina. O leitor de romances de mistério que, em particular, também está interessado em química, ficará impressionado aqui não apenas pela imaginação da autora, mas também pela extensão de sua perspicácia química (veja Agatha Christie: A Química de um (Quase) Assassinato Perfeito).

Referências
[1] D. J. Newman et al., Nat. Prod. Rep. 2000, 17, 215. DOI: 10.1039/A902202C
[2] M. S. Butler, Nat. Prod. Rep. 2008, 25, 475. DOI: 10.1039/B514294F
[3] R. H. Huxtable, S.K.W. Schwarz, Mol. Interv. 2001, 1, 189. http://triggered.edina.clockss.org/ServeContent?url=http%3A%2F%2Fmolinterv.aspetjournals.org%2Fcontent%2F1%2F4%2F189.full
[4] S. McLaughlin, R. F. Margolskee, Am. Sci. 1994, 82, 538.
[5] J. Buckingham, Bitter Nemesis: The Intimate History of Strychnine, CRC Press, Boca Raton, 2007. ISBN 978-1-4200-5315-9
[6] R. Sedivy, Arsen, Strychnin & Co, Carl Ueberreuter, Vienna, Austria, 2008 (in German). ISBN: 978-3-8000-7390-0
[7] S. Pain, New Sci. 2004, 46. http://www.newscientist.com/article/mg18324595.900-marathon-madness.html
[8] D. Martin, R. Gynn, The Olympic Marathon, Human Kinetics, Champaign, 2000. ISBN: 978-0-88011-969-6
[9] D. Dawson, K. Reid, Nature 1997, 388, 235. http://www.nature.com/nature/journal/v388/n6639/full/388235a0.html
[10] World Anti-Doping Agency, The 2015 Prohibited List, International Standard, 2014.
[11] R. C. McGarry, P. McGarry, Can. Med. Assoc. J. 1999, 161, 155. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1230877/
[12] G. Jackson, G. Diggle, Brit. Med. J. 1973, 21, 176. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1589243/
[13] F. Eiden, Kultur & Technik 2003, 27, 24 (in German). http://www.deutsches-museum.de/verlag/kultur-technik/archiv/27-jhrg-2003/
[14] C. Hinspeter, Nux Vomica – eines der wichtigsten homöopathischen Mittel, suite101.de, 2013 (in German).
[15] For current prizes see e.g. http://www.medvergleich.de/preisvergleich-strychnin (in German)
[16] The 10:23 Campaign, The 10:23 Challenge, http://www.1023.org.uk/the-1023-challenge.php

Nota do tradutor: [1?] Optou-se por traduzir ‘Persian poppy’ como papoula persa.

Texto traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com). A tradução do original ‘Strychnine: From Isolation to Total Synthesis – Part 1’ foi gentilmente autorizada pelos detentores dos direitos.

OBS: a sequência deste texto será publicada em breve, aguarde!

Como fazer o Fogovivo do Game Of Thrones

experimento de simulação do fogovivo
Ok, o Fogovivo faz parte apenas do mundo ficcional do livro/série ‘Game Of Thrones’, mas com conhecimento em química podemos fazer algo parecido.

O canal NurdRage apresentou uma reação que pode produzir um efeito similar ao descrito na obra de George R. R. Martin.

O metanol foi utilizado como base para o fogo por queimar com uma chama azul mais límpida, sem a presença de cor amarelada residual. Na falta de metanol você poderia tentar a troca por etanol (álcool comum) que talvez gere um pouco mais de tons amarelados na chama inicial.

Para fazer a chama ficar verde basta adicionar um pouco de borax ou ácido bórico. A presença de sódio no borax causa o aparecimento de flashes de chama de cor amarelada, estragando um pouco a pureza de uma chama totalmente verde.

NurdRage explica então como produzir trimetil borato para se obter uma chama com um verde mais puro – usando metanol, ácido sulfúrico e borax. Os detalhes do procedimento e quantidade dos reagentes podem ser vistos no vídeo abaixo.

O vídeo possui legenda em português. Veja como ativar a exibição.

Cuidados! O ácido sulfúrico é perigoso e corrosivo, o metanol é tóxico e pode causa cegueira se ingerido, e o experimento envolve uso de fogo; portanto somente deve ser realizado por pessoas com conhecimento técnico e dispondo dos equipamentos de segurança necessários.

Se você quer um procedimento mais simples para se conseguir chamas coloridas acompanhe o vídeo abaixo.

Texto e legenda escritos por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ).

Bolsa especial para filtrar urina humana

bolsa para filtrar urina
Dr Kevin Fong demonstra em uma palestra na Royal Society, na Inglaterra, uma bolsa especial que consegue fazer a reciclagem a urina humana.

Na verdade são duas bolsas, uma dentro da outra, a bolsa interna possui uma membrana semi-permeável especial que permite apenas a passagem da água, deixando os resíduos da urina na outra parte da bolsa.

O efeito é garantido pela adição de um ‘xarope’ que promove a migração osmótica da água pela membrana semi-permeável.

E um aviso bem chamativo informa onde você deve urinar e onde deve beber a água purificada. Não é uma boa ideia confundir o lado.
onde entra a urina e onde sai a água

Ok! Kevin diz que infelizmente o cheiro e gosto não são muito bons. Ainda lembram muito a urina. Mas ele garante que o processo é seguro. 😉

Vídeo com legenda em português.

Legenda e texto escritos por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ).

Dica de leitura
Urina como fonte de hidrogênio

Selando gases em tubos

cody mostra coleção de gases
O Cody Reeder, do canal Cody’s Lab, tem uma coleção de gases e no vídeo abaixo mostra o procedimento que utiliza para isolar e selar os gases dentro de tubos de vidro. A principal demonstração foi feita com o gás óxido nitroso!

O vidro utilizado tinha 10 milímetros de diâmetro com paredes de 2 milímetros de espessura.

Cody comenta que a principal dificuldade do procedimento é evitar que a água gerada pela combustão no maçarico usado para selar os tubos não fique presa dentro do tubo. Além de que é necessário observar bem a massa do gás que se deseja guardar no tubo para não se exceder um valor que cause uma alta pressão e rompimento da ampola.

Vídeo com legenda em português.

Atenção! Este procedimento pode gerar altas pressões que podem resultar em explosões e ferimentos. Além disso a eventual manipulação de nitrogênio líquido pode ser bem perigosa. Somente pessoas treinadas e com equipamento de segurança são autorizadas para realizar este tipo de procedimento.

Texto e legenda escritos por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ).