Categoria: História

Um assassino de uma cura

boton
Um bóton (ca. 1900) anunciando o Liquozone, anteriormente Powley’s Liquified [sic] Ozone. Liquozone foi lançado como uma defesa contra doenças relacionadas a germes, mas o produto era uma fraude de uma fraude. Como o jornalista Samuel Hopkins Adams observou em sua série ‘The Great American Fraud’ (1905), de Collier, “o oxigênio líquido não existe acima de uma temperatura de 229 graus abaixo de zero. Uma colher congelaria a língua, os dentes e a garganta de um homem antes que ele tivesse tempo de engolir.”

Por mais de um século, a terapia de ozônio tem sido uma fonte de falsas esperanças e ganhos ilícitos dos desonestos.

Em 1903, Nikola Tesla estava ficando desesperado. O prodigioso inventor havia atraído o multimilionário JP Morgan para investir em energia elétrica sem fio, mas até agora as tentativas de Tesla de criar a tecnologia se mostraram infrutíferas.

Quando Morgan se recusou a continuar apoiando o projeto, Tesla implorou ao banqueiro que reconsiderasse:

Eu nunca tentei, Sr. Morgan, dizer-lhe nem um centésimo do que pode ser prontamente realizado pelo uso de certos princípios que descobri. Se você imaginar que encontrei a pedra dos filósofos, não estará longe da verdade.

A resposta de Morgan foi simples: não.

Tesla, com sua credibilidade manchada por sua iniciativa hesitante, precisava restaurar sua reputação e gerar dinheiro. Ele admitiu isso para Morgan: “É absolutamente imperativo para mim lançar algo comercial sem demora”. Então Tesla se voltou para outra de suas invenções. Em 1896, ele havia patenteado o primeiro gerador portátil de ozônio nos Estados Unidos. Após a rejeição de Morgan, o cientista sem dinheiro registrou a Tesla Ozone Company, lançando seus dispositivos como uma maneira de limpar o ar em interiores.

No final do século XIX, moradores da cidade cada vez mais se preocupavam com a “fumaça do mal”, que era produzida pela queima de vastas quantidades de carvão e que se acredita causar doenças. Durante esse tempo, a poluição – uma palavra previamente reservada por Noah Webster para atos carnais “impuros”, tal como emissões noturnas – passou a significar a sujeira humana do ar e da água. Os urbanos pouco podiam fazer sobre o ar sujo fora de suas casas, mas talvez pudessem respirar mais facilmente dentro de casa.

Na verdade, as máquinas de Tesla encheram os quartos de veneno: o ozônio na atmosfera superior fornece um importante escudo contra a luz ultravioleta do sol, mas produza na sua sala e ele prejudicará você.

Hoje, o FDA [Food and Drug Administration; Administração de Alimentos e Medicamentos, em protuguês] declara que o ozônio é um gás tóxico sem fins terapêuticos conhecidos; geradores de ozônio foram aprovados apenas para esterilizar água e equipamentos. Mesmo assim, mercadores inescrupulosos vendem ozônio como uma cura para o câncer e a AIDS. Uma pesquisa na Internet sobre a “terapia do ozônio” mostra que o uso do ozônio está vivo e bem – em purificadores de ar, em pomadas tópicas e em gás soprado no reto.

Como o ozônio, conhecido por ser tóxico, desenvolveu em algum momento uma reputação de ser saudável?


Antes que os humanos descobrissem o ozônio, eles o sentiram. O cientista germano-suíço Christian Friedrich Schönbein notou um odor distinto depois de passar uma corrente elétrica através da água. Em 1840, ele sugeriu que a eletricidade estava criando uma nova substância, que ele apelidou de ozônio – de ozein , em grego, de “cheirar”. (Schönbein estava certo: quando carregado com eletricidade, o oxigênio forma uma molécula instável de três átomos de oxigênio. Essa molécula, o ozônio, também é produzida quando um raio atinge o ar, criando o mesmo cheiro detectado pelo Schönbein no laboratório.)

Desde o início, o ozônio seduziu a imaginação de profissionais e empresários da área médica. Por um lado, cheira a “limpeza”. Quando as gotículas de água se quebram no ar – como durante uma tempestade com raios – o ozônio é criado junto com um cheiro “fresco” associado à chuva.

O cheiro do ozônio despertou interesse em suas propriedades purificadoras, mesmo quando experimentos revelaram seus efeitos nocivos. Em 1874, o químico James Dewar e um colega relataram que, após a exposição ao ar ozonizado, as rãs se tornavam letárgicas, as aves ofegavam, e o sangue dos coelhos perdia oxigênio. Um entrevistado na Nature , apesar de reconhecer que os experimentos de Dewar revelaram um risco de superexposição, continuou a endossar o uso do ozônio nos hospitais, baseado na crença tradicional de que o raio – e, portanto, o ozônio – purificaria o ar. Além disso, alguns entusiastas do ozônio acreditavam (e ainda acreditam) que a molécula pode fornecer melhor ao corpo o oxigênio necessário porque é composto por três átomos de oxigênio, em vez dos dois habituais.

No entanto, até mesmo o descobridor do ozônio reconheceu seus efeitos nocivos. Schönbein relatou que a inalação de ozônio pode causar dores no peito e dificuldade para respirar. Ratos submetidos a uma atmosfera de ozônio morreram.

terapia falsa com ozônio
A ozonoterapia, como foi descrito pelo pioneiro radiologista armênio-americano Mihran Krikor Kassabian, em Röntgen Rays and Electro-therapeutics (1907). Kassabian escreve que a terapia é de “valor primordial, onde sprays ou vapores medicados não podem alcançar a parte por outros meios”. (Fonte: Instituto de História da Ciência)

No entanto, a aura saudável do ozônio persistiu. Em 1911, um ano após a fundação da Tesla Ozone Company, um artigo no Proceedings of the Royal Society of London B maravilhou-se de que os efeitos saudáveis ​​do ozônio “tenham, por mera interação, se tornado parte integrante da crença comum; e, no entanto, a evidência fisiológica exata em favor de seus bons efeitos tem sido quase totalmente insuficientes.” Os autores descobriram que as únicas consequências claras do ozônio são os danos pulmonares e a morte. No entanto, eles ainda aceitavam no potencial positivo do ozônio, especulando que os efeitos benéficos da molécula funcionavam através do olfato.

Havia um sopro de verdade nas conjeturas que rodeavam o ozônio; sua estrutura de três átomos de oxigênio é instável e, à medida que se decompõe, remove os elétrons das paredes celulares e destrói o DNA da célula. Essa propriedade destrutiva torna o ozônio útil para desinfetar a água e, em alguns casos, ferramentas dentárias e médicas. Mas o caos que o ozônio causa às células bacterianas também se aplica ao tecido humano, tornando-o perigoso para a pele em quantidades suficientes para, digamos, limpar as feridas.

Durante a Primeira Guerra Mundial, enfermeiros e médicos usaram o ozônio exatamente para esse fim. A comunidade médica parecia disposta a tentar uma série de métodos de desinfecção para tratar o crescente número de soldados feridos que enchiam hospitais. Médicos do Hospital Militar da Rainha Alexandra, em Londres, usaram o ozônio para tratar feridas e abcessos, aplicando o gás diretamente a ferimentos por até 15 minutos ou até que a carne estivesse “brilhante”.

O Departamento Médico do Exército dos EUA incluiu o ozônio como um “método principal” para desinfetar feridas de guerra em sua história cirúrgica da Primeira Guerra Mundial, e pelo menos um manual de enfermagem da época referia-se a um método alemão de limpeza com ozônio da carne ferida. Mas uma revisão das técnicas cirúrgicas que o Exército dos EUA produziu depois da guerra enfatizou outras técnicas de saneantes, como anti-sépticos com hipoclorito de sódio.

De fato, a irrigação de feridas com anti-sépticos, que se tornaram populares após a Primeira Guerra Mundial, pode ter diminuído a popularidade do ozônio. Os manuais médicos começaram a abordar a terapia do ozônio com ceticismo. Um manual de enfermagem de 1919 refere-se a “falácias populares” sobre o ozônio, sugerindo que seus efeitos benéficos eram menos certos do que seus efeitos venenosos. Na década de 1950, o FDA começou a apreender geradores de ozônio.


Mas os geradores de ozônio nunca desapareceram completamente. E a promessa do ozônio evoluiu para corresponder às reivindicações dos charlatães modernos. Com a infinidade de outros desinfetantes baratos e eficazes no mercado, os vendedores de ozônio estão menos inclinados a enfatizar as qualidades higienizantes de seus produtos. Cura da infertilidade, HIV-AIDS e câncer é o novo campo. Essa metamorfose é tanto resultado do desespero humano quanto do conhecimento de marketing.

Sites que vendem produtos de ozônio quase invariavelmente usam a história para enfatizar sua credibilidade, destacando o envolvimento de Tesla e o uso medicinal do ozônio durante a Primeira Guerra Mundial. Esses sites frequentemente imitam citações acadêmicas incluindo outros links de sites pró-ozônio, criando emaranhados de citações cibernéticas que levam a lugar nenhum.

Os fornecedores equilibram essas tentativas de credibilidade científica com generosas doses de imprecisão. Por exemplo, um site promete “influenciar as membranas celulares e equilibrar os níveis de produtos de peroxidação lipídica”. Essa sequência de palavras pode soar bastante científica, mas é apenas outra maneira de descrever a capacidade do ozônio de infiltrar-se indiscriminadamente nas membranas celulares e matar células – um efeito dificilmente desejável.

O jargão complicado é combinado com a simplicidade sedutora do ozônio – um composto químico do leque do ensino médio. É uma combinação difícil de resistir, já que os compradores são mais atraídos pelo que eles acham que entendem.


Em 2010, a FDA confiscou 77 geradores de ozônio na Califórnia que seriam vendidos como dispositivos médicos por um total aproximado de US$ 80.000. Embora a FDA não colete dados sobre quem compra os dispositivos, evidências sugerem que alguns médicos da medicina alternativa compram geradores de ozônio para suas clínicas, cobrando centenas ou milhares de dólares dos pacientes pela promessa de cura. Nos casos que atraíram a atenção da mídia, os pacientes morreram após receberem terapia com ozônio, em vez de outros tratamentos mais padronizados. Em um caso de 2015, dois médicos homeopatas de Las Vegas supostamente usaram geradores de ozônio para encher uma seringa com solução ozonizada e injetá-la em um paciente, que morreu no processo. Os médicos foram acusados ​​de assassinato em segundo grau e foram condenados a um mínimo de 25 anos de prisão.

Na maioria das vezes, as respostas federais à terapia de ozônio foram silenciadas. A FDA não enviou uma carta de advertência a um fabricante de geradores desde 2012. A Federal Trade Commission (FTC), que tem jurisdição sobre alegações de propaganda enganosa, trouxe sua mais recente ação relacionada ao ozônio em 2000 contra um fabricante de geradores de ozônio sediado no Tennessee. O caso chegou a cerca de US$ 1,5 milhão e impediu o fabricante de fazer futuras alegações sobre a capacidade dos dispositivos de purificar o ar. “É principalmente uma questão de recursos para nós”, disse Richard Cleland, diretor assistente da Divisão de Práticas de Publicidade da FTC. Incapaz de perseguir todas as alegações falsas de publicidade feitas, a FTC tem que avaliar os riscos de saúde e monetários apresentados por um anúncio antes de prosseguir com um caso. Cleland acredita que os anúncios de ozônio estão visando um público relativamente pequeno de entusiastas da homeopatia. “Não tenho certeza de quanto as vendas são para essas empresas”, diz ele. Em suma, o FTC tem mais o que fazer.

Tesla, embora não seja um showman mesquinho, provavelmente ficaria surpreso em saber que os vendedores de ozônio de hoje usam seu breve envolvimento como um fator de legitimidade. Quando se trata de seus geradores de ozônio, Tesla parecia estar livre de ilusões de grandeza. O ozônio não é mencionado em sua autobiografia My Inventions .

Tesla disse a Morgan que ele criaria uma pedra filosofal de sua tecnologia sem fio – uma fonte infinita de riqueza. Mas ele pode ter subestimado o ozônio. Tornou-se seu próprio tipo de pedra filosofal. Através de grandes promessas e mística química, a terapia de ozônio continua a transmutar uma substância básica em ouro.

Texto escrito por Natalie Jacewicz.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘A Killer of a Cure’ com autorização oficial dos detentores dos direitos. Revisado por: Kelly Vargas.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

True Blue: DuPont e a Revolução das Cores

Os coloristas criadores de tendências do Duco Color Advisory Service, da DuPont, foram profetas da revolução das cores, orientando as corporações e os consumidores a escolher os matizes para tudo, desde os pára-lamas dos carros até as bancadas de cozinha.

Em agosto de 1926, Irénée du Pont, vice-presidente da EI du Pont de Nemours and Company, escreveu para Henry H. Bassett, gerente geral da divisão Buick da General Motors Corporation (GM), com uma proposta. Durante o início da década de 1920, a DuPont e a GM, ambas sob a liderança de Pierre S. du Pont, desenvolveram o acabamento Duco, uma laca automotiva de secagem rápida, durável, barata e colorida. Mais recentemente, os coloristas corporativos da DuPont criaram uma paleta distinta para a GM. Agora, o gigante automotivo, que usou o acabamento Duco em muitos de seus carros, estava tentando atrair o colorista de primeira linha da DuPont, H. Ledyard Towle, para sua divisão Fisher Body. Naturalmente, Irénée du Pont respondeu.

Towle dirigiu o Duco Color Advisory Service da DuPont em Nova York, recebendo pedidos de empresas automobilísticas e aconselhando-as sobre estilo e cor. O serviço de consultoria aprimorou a reputação da DuPont como uma empresa confiável que atendia às necessidades dos clientes, ao mesmo tempo em que protegia suas decisões estéticas. Se a Towle fosse partir para a GM, o relacionamento da DuPont com outras montadoras poderia ficar comprometido. Era imperativo que Towle – e os segredos comerciais de Detroit sobre cor – permanecessem na DuPont.

campanha save the surface
Detalhe, anúncio publicitário “Save the Surface”, The Literary Digest, 11 de fevereiro de 1928. (Fonte: Regina Lee Blaszczyk)

As deliberações da DuPont-GM sobre Towle coincidiram com grandes mudanças na prática de design corporativo durante a década de 1920. Empresas que fazem todos os tipos de produtos, de potes e panelas a aviões e automóveis, experimentaram maneiras de aumentar as vendas. Os esforços incluíram publicidade em massa, venda em prestações, mudanças no modelo – e merchandising nas cores. A popularidade da Color como ferramenta de negócios levou a Fortune, a nova revista corporativa do país, a publicar um artigo de 1930 intitulado “Colour in Industry”, descrevendo um “mundo repentinamente caleidoscópico”, no qual a cor funcionava como “um vendedor mestre, um distribuidor extraordinário”. A Fortune deu um nome atraente a essa mudança monumental: a revolução das cores.

Nesse contexto, a DuPont precisava do expertise de coloristas como Towle. Tradicionalmente, a indústria da moda define as tendências de estilo em cores e outras seguem. Interpretar cores da moda para Detroit exigia habilidades especiais. Os coloristas corporativos tiveram que amenizar os tons às vezes escandalosos gerados pelos costureiros parisienses para se adequar aos estilos de vida casuais e aos gostos variados dos americanos. Outra restrição veio de fabricantes, que demandavam um custo/benefício. Fabricantes de automóveis foram pegos entre as eficiências de preto e uma explosão descontrolada de cores dispendiosas. A regra das médias acabou por dominar o grande mercado do consumidor mediano, o maior público de carros coloridos. Os americanos da classe média compartilhavam o desejo de ter padrões de vida mais elevados, mas eram divididos por renda, educação, etnia e classe social. A cor comercial tornou-se uma ferramenta para expressar essa tensão sutil; os coloristas corporativos da DuPont eram os homens que mediavam o terreno.

Inovação Duco
As primeiras cores da Duco se originaram de uma parceria DuPont-GM que canalizou talentos gerenciais, de engenharia e científicos entre as duas empresas. No início de 1922, as empresas começaram a adaptar o Viscolac, um verniz de nitrocelulose da DuPont usado para a pintura de lápis, em uma nova laca, a Duco, adequada para acabamentos de automóveis. Até o início da década de 1920, o único acabamento automotivo durável e barato era o famoso esmalte preto processado em alta temperatura que Henry Ford usava em seu modelo T. Os carros de luxo, como o Cadillac e o Rolls Royce, vinham em uma variedade de cores pintadas à mão, mas mesmo aqueles vernizes desbotavam, lascavam e riscavam. Alfred P. Sloan, que havia se tornado presidente da GM em maio de 1923, acreditava que os consumidores que comprassem carros mais baratos apreciariam uma gama de opções de cores, especialmente se as pinturas durassem. A montadora Oakland Motor Car Company, decidiu pintar todos os sete de seus carros de turismo em 1924 com a Duco; cada um com dois tons de azul, listras acentuadas de vermelho ou laranja. Este tratamento “True Blue” fez sua estréia em Oaklands no Salão do Automóvel de Nova York em dezembro de 1923, concessionárias e consumidores responderam à nova dimensão estética e à promessa de um melhor desempenho técnico. No início de 1924, as os pedidos abundaram nos showrooms da GM; “O Duco se tornou tão popular”, relatou um executivo, “que os clientes agora estão exigindo isso”. Reconhecendo que o Duco era uma sensação, Sloan recomendou que a GM o aplicasse a todos os modelos. Em meados de 1925, as divisões da GM, da Chevrolet à Cadillac, estavam deixando de lado os vernizes e esmaltes testados e aprovados em favor da Duco.

O Duco teve várias vantagens em relação aos revestimentos tradicionais. Os vernizes mais antigos eram escovados em mais de uma dúzia de passos e precisavam de longos períodos de secagem entre as pinturas. O Duco com spray de secagem rápida reduziu os estágios, o tempo de secagem, os custos de mão de obra e o espaço de armazenamento. Vernizes tradicionais ficavam lascados, rachados, craquelados e desbotados; a laca Duco era quase invencível. Tolerava ar, sol, chuva, lama, umidade, calor, frio, água salgada, bactérias, transpiração, sujeira, sabões e detergentes. A maioria dos acabamentos baratos vinham em poucas cores, enquanto a Duco disponibilizou um arco-íris de tons. Junto com a mudança anual de modelo e a compra em prestações, o novo acabamento agregou valor à linha automotiva da GM.

Mesmo antes da estréia da True Blue, os observadores, com os dedos no pulso do mercado dos consumidores, exigiam carros coloridos e populares que correspondessem aos gostos dos consumidores em moda e design de interiores. A revolução das cores que varreu a América nos anos 1920 construiu transições que estavam em andamento há 75 anos. Durante a era dourada, empresas químicas inglesas e alemãs introduziram corantes sintéticos que usinas americanas usavam para fabricar têxteis em uma variedade de matizes permanentes e brilhantes. As impressoras usavam a cromolitografia para gerar cartões comerciais coloridos e cartazes para os anunciantes, bem como fotos decorativas para as casas das pessoas. Até mesmo as ruas comerciais anunciavam novos matizes, já que os supermercados da A&P e da Woolworth adotaram fachadas vermelhas nos estabelecimentos como parte da marca da cadeia de lojas. Essas novidades aguçaram os olhos e aguçaram o apetite pela cor.

O sucesso da True Blue fez com que as indústrias automotiva e química levassem a estética a sério. Fabricantes de tintas como a Egyptian Laca Manufacturing Company e a Valentine and Company, determinados a não serem superados pela DuPont, apresentaram suas próprias tintas, vernizes e lacas coloridas. Além das montadoras, os pintores de oficinas locais adotaram acabamentos de nitrocelulose para repintura de carros. Empresas como Murphy Varnish e Ditzler Color desenvolveram guias cromáticos para ajudar os pintores personalizados a entender os mistérios da cor. Dispositivos que simplificaram a seleção de cores democratizaram as decisões estéticas, que há muito eram atribuídas a artistas e donas de casa. Esses guias mostravam homens, de altos executivos à mecânicos de oficinas, exatamente o que a beleza poderia fazer pelo comércio e como sua gestão adequada poderia estimular as vendas no mercado de automóveis segmentados.

O Serviço de Consultoria da Duco Color
A princípio, a DuPont continuou vendendo a Duco para mais fabricantes de automóveis e oficinas de reparos. No início de 1925, seus clientes incluíam cinco divisões da GM e quatorze outras montadoras. Naquele ano, a DuPont vendeu mais de 3,7 milhões de litros de Duco por cinco dólares cada. Tecnicamente, o Duco superou a concorrência e o futuro parecia brilhante. No entanto, os gerentes da DuPont que conheciam as cores se sentiam desconfortáveis, sabendo que a empresa de produtos químicos precisava acompanhar continuamente a crescente sofisticação dos consumidores.

Em janeiro de 1925, dois gerentes da DuPont discutiram a necessidade da empresa por conselhos práticos sobre a psicologia das cores, como forma de antecipar os grandes modismos das cores. A DuPont deu um salto cromático em outubro de 1925, quando contratou Towle e criou o Duco Color Advisory Service para projetar as mais recentes e desejáveis ​​combinações de cores para a indústria automobilística. Nascido no Brooklyn, Towle estudou pintura no Instituto Pratt e na Art Students League. Durante a Primeira Guerra Mundial, ele aproveitou bem seu treinamento artístico como membro do célebre Corpo de Camuflagem do Exército dos EUA. Depois disso, adaptou-se ao crescente mundo da publicidade, trabalhando sequencialmente como diretor de arte de três agências de Nova York: HK McCann, Frank Seaman e Campbell-Ewald. Na Seaman ele também atuou como executivo encarregado da conta da DuPont e como executivo de representação da Cadillac, Oldsmobile, La Salle e Pontiac – todas divisões da GM.

Na década de 1920, grandes agências de publicidade de Nova York se autodenominaram como empresas de serviço completo, preparadas para ajudar os clientes a conceituar campanhas, escrever textos, criar obras de arte, projetar produtos, estimular a publicidade e conduzir pesquisas com consumidores. Seus departamentos de arte mostraram aos clientes como aproveitar o apelo das cores em anúncios impressos e projetos de produtos. Nesta capacidade, como Towle recordaria mais tarde em um relatório anual, ele “trabalhou pela primeira vez em cores com a indústria automotiva em 1924”, quando era “o único engenheiro de cores atuando no comércio de automóveis”. O pintor transformado em diretor artístico parecia um ajuste perfeito aos planos da DuPont de racionalizar a incipiente esfera das cores.

Os anúncios da Duco Color Advisory Service em revistas especializadas como Autobody afirmavam que o profissionalismo do serviço ajudou a DuPont a identificar combinações de cores “conhecidas por agradar à média”, que Towle e sua equipe de especialistas em cores souberam “escolher com confiança”. Isso significava amarrar os acabamentos da DuPont às tendências da moda européia, mantendo a Duco a par dos gostos em transformação e projetando esquemas de pintura que melhorassem as formas automotivas.

Para cumprir a primeira missão, Towle viajava para a Europa a cada outono, onde visitou o British Motor Show no Olympia em Londres e o Salon de l’Auto em Paris. Lá, ele estudou os carros novos e as pessoas elegantemente vestidas e relatou ao Duco Color Advisory Service, que os reformatou como um press releases. Os relatórios de Towle sobre a cor circulavam na cultura popular americana, enquanto jornais de todo o país publicavam suas descrições animadas e envolventes. “Toda Paris é louca por cor!” Towle declarou no Tribune Providence no final de 1926. O Grand Palais, que hospedou o Salon, parecia em chamas em laranjas quentes e laranjas queimadas. Em bulevares animados, autos do “haute monde e o demi-monde” rodopiavam em “esquadrões de cores agradáveis… como uma corredeira de montanha no final de um arco-íris.” Às vezes, Towle fazia compras de alta costura, fazendo anotações em desfiles para artigos sobre tecidos da alta costura. No outono de 1926, ele solicitou esquemas de pintura automotiva aos principais costureiros de Paris. Esses figurantes se voltaram para o glamour dos carros americanos: Lucien Lelong combinava tons de verde e pêssego em um roadster, enquanto o brilho de Madeleine Vionnet para carros esportivos a levou a decorar um em “tons de Dekkan Brown e London Smoke”. A lista cresceu enquanto Towle via nuances de cores em todos os lugares; ele entendeu seu lugar no sistema da moda e procurou explicar seu significado.

Por volta das férias de inverno, Towle retornou à Nova York para o National Automobile Show, onde fabricantes de carros americanos exibiram as mais recentes características de engenharia, acessórios, estofados e esquemas de cores. Entre os destaques no show nacional de janeiro de 1926 estavam 12 Lincolns decorados em tons espetaculares adaptados da plumagem de raros pássaros americanos e tropicais: o tanager verde do Equador, o cuco-lobo do Haiti, o pica-pau amarelo da Venezuela e muito mais. Um ano depois, as cores no show foram ainda mais estupendas. A “produção em massa”, relatou Towle no Brooklyn Standard Union e no Pittsburgh Gazette-Times , havia percebido que “todo o país está se interessando mais pelo uso da cor”. As fábricas de automóveis manejaram habilmente os pincéis, exibindo carros com esquemas de dois tons em “belas harmonias atraentes e quentes”. Eles fizeram para-lamas, suportes de janela, coberturas de pneus traseiros e estofamentos para combinar com o resto do carro. Com satisfação, Towle descreveu o National de 1927 como “o ponto alto da harmonia de cores”.

Esse tumulto de cor levou a alguns erros de projeto, e Towle estava ciente destes problemas. Algumas montadoras foram à loucura com as novas cores de nitrocelulose, arruinando bons modelos com trabalhos de pintura imprudentes. Abraçando uma abordagem forma-segue-função, Towle acreditava que um esquema de cores deveria ter alguma relação com a forma do carro. Os melhores trabalhos de pintura, explicou Towle em um artigo da Brooklyn Standard Union em 1927, acentuaram a forma da máquina e ocultaram suas falhas de projeto. “Listras longas e vigorosas ao longo da moldagem da parte inferior” fizeram um modelo “parecer mais longo”. Por que não, Towle postou, passar a faixa na frente do carro? Quando as pessoas se maravilhavam com as novas rodas multicoloridas da National 1927, Towle sugeriu que elas poderiam gostar dos efeitos policromos que acentuavam a forma do carro. Towle era um médico estético com um estetoscópio e um receituário. Seu paciente era a indústria automobilística visualmente ingênua; seu remédio, cor aplicada judiciosamente.

Towle assume as cores da GM
Entre 1925 e 1928, a Towle trabalhou arduamente para colocar o Duco Color Advisory Service em pé firme. Ele ficou com a DuPont em 1926, apesar das aberturas da GM. Em julho de 1928, no entanto, ele aceitou a oferta da montadora líder e mudou-se para Michigan. Lá ele trabalhou como o primeiro engenheiro de cores da GM e provavelmente cofundou sua Seção de Arte e Cor com o extravagante construtor de Hollywood Harley J. Earl.

Como colorista chefe da GM, Towle divulgou uma previsão mensal composta de uma circular animada sobre tendências gerais de estilo e um apêndice estatístico listando as vendas de carros por cor. As circulares de Towle foram além de uma lista básica de cores de carros mais vendidos; suas tabulações detalhadas mostraram que as escolhas do consumidor variavam de região para região e de modelo para modelo. Em uma circular da GM de junho de 1929, por exemplo, ele revelou que 87% dos compradores da Pontiac no Noroeste do Pacífico preferiam tons de azul. No Nordeste, apenas 17% dos compradores de Buick gostaram do azul. As comparações continuaram. Sempre cético, explicou Towle no periódico da Society of Automotive Engineers que ele verificou a opinião dos revendedores em relação ao gosto do público como “revelado nos periódicos, nos jornais e no rádio sobre roupas, móveis de casa e outros artigos”. Suas antenas de moda sempre foram sintonizadas no canal do consumidor. Muito do método de Towle se baseava em fatos concretos, mas muito também dependia da experiência, da intuição e do senso comum.

Towle passou dois anos mostrando à GM como lidar com as questões escorregadias de estilo, moda e bom gosto. Em 1930, porém, ele deixou a GM para retornar à agência Campbell-Ewald, desta vez para o escritório de Detroit, onde se especializou em publicidade ao ar livre, incluindo outdoors e cartazes. Ele estava mais feliz em unir cores, design e publicidade. Em 1934, tornou-se diretor fundador da Divisão de Design Criativo e Cor da Pittsburgh Plate Glass, que criava esquemas de cores para eletrodomésticos, layouts para showrooms e vitrines, novos tons para tintas e vernizes e de publicidade da empresa. Ele permaneceu uma figura importante na revolução das cores e ampliou sua influência com seus projetos para indústria, comércio e arquitetura.

Duco simplificado com cores Munsell
O sucessor de Towle no Duco Color Advisory Service foi outro colorista, Howard Ketcham. Membro da alta sociedade nova-iorquina, Ketcham cresceu em Manhattan e em Long Island e frequentou a prestigiada St. Paul’s School e a Amherst College. De 1925 a 1927, ele seguiu os passos de Towle, trabalhando como diretor de arte de HK McCann enquanto estudava na New York School of Design. Em 1927 ele se juntou ao escritório Duco, onde trabalhou até 1935. Então ele fundou a Howard Ketcham, Inc., uma consultoria de cores no Rockefeller Center.

A Ketcham herdou da Towle um serviço de consultoria de cores que enfatizava o valor de mercado da beleza praticada nas artes industriais. Inicialmente, a Ketcham continuou esses esforços através de um projeto conjunto com a Cheney Brothers, uma fábrica de seda que entendia o sistema da moda. A estratégia de Cheney era centrada em um portfólio de cores de três níveis: “novidades”, ou novos itens sazonais, linhas de “segunda temporada” e “populares”. As novidades de alta moda, desmembradas das previsões de cores da empresa, renderam a maior parte dos lucros. Ao longo dos anos, o diretor de vendas de Cheney, Paul Thomas, foi muito amigo dos interesses da DuPont, fornecendo à empresa previsões de cores para a seda. Agora ele esperava que uma ligação com a DuPont confirmasse o status de Cheney como líder do setor. O Duco Color Advisory Service, por sua vez, esperava aprender algo sobre design e marketing de alto nível.

No final de 1928, a DuPont anunciou um conjunto de cores de carros Duco com base na previsão de Cheney para o outono seguinte. Incluía a Red Shadow Red, “um vermelho amarelado adequado para uso com marrom ou bege, como uma cor aros ou para listras,” e Sea Bubble, “um bege natural desenvolvido pela indústria da seda que recebeu grande aceitação no mercado comercial têxtil, bem como na indústria automotiva. ” Havia também as cores Pewter Pot, Blu-Gray, Gray Gull, Bay Tree, Verdancia, Water Glo e Lei Orange. A paleta de Cheney-DuPont continuou a missão da Towle de aumentar o capital cultural da DuPont com linhas de alta classe.

Mas embora Ketcham reconhecesse a importância das artes industriais, este colorista da DuPont também adotou as práticas da profissão de engenharia (mais tarde ele foi chamado de pai da engenharia de cores). Alarmada com o portfólio de 7.500 cores da DuPont, a Ketcham simplificou a razão de ser do Serviço de Consultoria da Duco Color. O truque estava em determinar quais cores ressoavam na classe média, de modo a melhorar a eficiência e aumentar as vendas. Em seus oito anos como colorista chefe da DuPont, Ketcham se concentrou em racionalizar as previsões de cores e reduzir radicalmente a paleta Duco.

O primeiro passo da Ketcham foi criar o Automobile Color Index, uma análise quantitativa mensal das vendas da Duco. Essa ferramenta de previsão híbrida deve seu rigor analítico à Towle e à GM e seu respeito pela moda à Cheney. Emulando Cheney, Ketcham dividia as cores Duco em três grupos: padrão, estilo e popular. Começando no verão de 1929, Ketcham rastreou esses três grupos e mediu a ascensão e queda de famílias de cores, tais como vermelhos, marrons e amarelos. Sua pesquisa revelou como a Grande Depressão afetou os hábitos de compra dos consumidores. Em 1933, o preto estava de volta aos negócios, um grande desafiante para o azul. O Automobile Color Index resumiu essas tendências em tabelas e gráficos elaborados e exibiu o conhecimento estatístico do novo colorista chefe da DuPont.

Em seguida, a Ketcham lançou o tributo completo da DuPont à engenharia de cores: Duco Calibrated Colors, uma paleta de 290 matizes cuidadosamente selecionadas. Em 1932, as empresas americanas de pintura tinham 11.500 cores automotivas diferentes em seus inventários. Não havia lógica por trás desse crescimento, decorrente da falta de planejamento. Muitos fabricantes de laca ainda ofereciam cores que ninguém encomendou há vários anos. Mas o maior problema está nas práticas de fabricação. Alguns produtores acharam difícil controlar reações químicas em suas fábricas, gerando “até 80 variações de uma cor original”. As montadoras de carros atarefadas exacerbaram o problema quando aceitaram os lançamentos off-color. As coisas também pioraram quando as empresas de automóveis trocaram os fornecedores de tinta, que tentaram, sem sucesso, igualar as cores dos concorrentes. O resultado final foi um número crescente de incompatibilidades.

Ao criar as Cores Calibradas Duco, a Ketcham adotou o prático sistema de medida de cor da Munsell Color Company para descrever matiz, valor e croma. Enquanto Towle apoiava uma psicologia da cor, Ketcham enfatizou fatos concretos. Escrevendo para o comércio de tintas, ele descreveu uma harmonia de dois tons de maneira simples e direta: “Cor prevalente um marrom claro. O caráter de tal marrom pode ser melhorado através do uso de luz, verde azulado claro como uma ênfase de listras. O marrom é na realidade um fraco tom de vermelho. O verde azulado é o complemento do vermelho. O uso de uma cor com seu complemento tende a intensificar as duas cores”. Essa linguagem de eficiência tinha valor de mercado. O uso do sistema Munsell por parte da Ketcham refletia a nova percepção da Duco de que a cor podia ser domada, controlada e empacotada.

Ironicamente, o plano de simplificação de Ketcham se enquadrava diretamente nas artes industriais, onde Albert H. Munsell fez sua pesquisa pioneira. Durante a década de 1920, o Laboratório de Pesquisa Munsell e a Munsell Color Company realizaram pesquisas fotométricas com o Bureau of Standards e divulgaram seu sistema entre escolas e empresas. Entre 1928 e 1930, Walter M. Scott, antigo químico-chefe de Cheney, trabalhou como diretor de serviços da Munsell Color Company. Scott usara o sistema Munsell na usina de seda de Cheney, o que levou a sua entusiástica promoção dele como uma ferramenta estética para os negócios. No início da década de 1930, o método prático de medição de cores de Munsell estava rapidamente se tornando o padrão aceito nas artes industriais, e Ketcham provou ser sábio ao adotá-lo para a DuPont.

Nos 10 anos entre a chegada de Towle e a partida de Ketcham, a DuPont experimentou uma notável transformação na prática de cores. Seus temperamentos e técnicas diferiam, mas ambos tinham pressupostos comuns e reconheciam a responsabilidade fundamental do colorista no mercado dos compradores. “É tão caro estar muito à frente da tendência de cor quanto não é lucrativo ficar para trás”, escreveu Ketcham na revista Industrial Finishing. “Então, o fabricante ou revendedor que deseja atender os mercados quando eles iniciam faz bem em determinar antecipadamente a escolha das cores pelo público.” Os coloristas experientes aprenderam, assim, a seguir as pistas do mercado, observando as mulheres vestindo vestidos de Paris ou analisando as vendas de Buicks azuis. Eles foram, em suma, “obrigados a manter-se a par da consciência de cor do consumidor”.

Porquê True Blue importava
A história da DuPont e a revolução das cores revelam muito sobre o funcionamento interno do sistema de moda durante a era moderna. A DuPont descobriu que não havia nada de fácil nos negócios da moda. Os homens do mercado de tintas achavam difícil mensurar o consumidor feminino instável e volúvel. No final, a DuPont seguiu o comércio têxtil, que, como outras indústrias de produção em lotes, aperfeiçoou um sistema de mediação do consumidor. O gigante químico em crescimento até adotou o sistema de cores Munsell mais favorecido nas artes industriais.

Conforme a DuPont padronizou a paleta Duco, a empresa ajudou a estabelecer novas regras básicas para a inovação de design em bens duráveis. Em meados da década de 1930, as escolhas de cores Duco incorporavam os gostos no grande meio-termo – o mercado de massa – enquanto permitia variações. Blue agradou aos conservadores, mas o popular vinha em muitas listras. Além do True Blue, havia centenas de outros ‘blues’ [azuis], todos voltados para a variedade de gostos populares. Essa seleção permitiu aos consumidores da classe média sinalizar as diferenças entre si.

A proliferação de sistemas de previsão chega ao cerne da questão. Não havia uma maneira melhor de prever o apelo das cores com precisão, porque não havia um gosto único ou uma única categoria de produtos. No entanto, seja nos têxteis ou nos automóveis, as paletas como um todo tinham apelo popular, e as cores individuais tinham um pouco de distintividade. Cada um foi projetado para trabalhar com uma linha específica de produtos. Uma mulher pode usar um terno Rosa Choque de Elsa Schiaparelli por décadas, mas um carro Fire Red ficava logo cansativo. Cópias exatas de cores de alta costura pareciam estranhas em para-lamas, portas e estofados. Homens como Towle e Ketcham explicaram por quê. Quando os coloristas industriais falavam, as corporações ouviam e, em meados da década de 1930, os especialistas em cor tinham uma posição na cultura empresarial americana.

Este artigo baseia-se na pesquisa de um novo livro,The Colour Revolution, financiado pela Edelstein Fellowship da CHF e pela National Endowment for the Humanities Fellowship for 2007–2008.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘True Blue: DuPont and the Color Revolution’ com autorização oficial dos detentores dos direitos. Revisado por: Kelly Vargas.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

A ciência da satisfação

fonte da imagem Flickr usuario Peter Thoeny
O sabor intrigante do caldo dashi levou ao químico japonês Kikunae Ikeda a isolar o umami. Apesar de ter sido descoberto há quase um século, o sabor ainda é um mistério.

Um gourmand japonês descobre o quinto elemento do sabor.

A pergunta parecia bastante simples: qual é o sabor dessa sopa? Kikunae Ikeda, um químico japonês, fez a si mesmo essa pergunta enquanto comia um de seus pratos favoritos, um caldo chamado dashi. Ele considerou cada um dos quatro componentes básicos do sabor, um a um – doce, amargo, salgado, azedo. Mas para sua surpresa, nenhum deles se encaixou. Ele podia sentir algo mais no dashi, algo além do quarteto usual. Mas o que? Essa pequena e incômoda questão logo revolucionária a compreensão científica do sabor – e transformaria os paladares dos seres humanos em todo o mundo.

Ikeda veio de uma família refinada – parte de um antigo clã samurai – que havia caído nos tempos difíceis no final do século XIX. Ele teve que vender sua cama para arranjar dinheiro suficiente para a faculdade, e deu aulas de Shakespeare, em inglês, em troca de dinheiro. Ele também era um pouco gourmand, e enquanto avançou em seus cursos de ciência, ele ficou atormentado pela química do sabor, especialmente aquela propriedade não salgada, não azeda, não doce e não amarga que ele sentiu no dashi.

O ingrediente principal de Dashi é uma variedade de kelp chamada kombu; quando Ikeda se tornou professor de química na Universidade de Tóquio, ele decidiu separar o kombu em seus compostos e isolar o sabor do dashi. Ele começou em 1907, fervendo 41 quilos de alga marinha em uma resina de alcatrão. Ele então retirou vários sais e compostos orgânicos nos meses seguintes até colher 28 gramas de cristais marrons. Eles pareciam grãos de areia, mas assim que ele experimentou um deles – bum! Aquele sabor delicioso do dashi irrompeu em sua boca. Análises revelaram que os cristais eram glutamato (ácido glutâmico), e Ikeda chamou esse novo sabor de umami, significando “esplendor” em japonês.

Durante a década seguinte, Ikeda continuou a explorar diferentes aspectos do umami. Primeiro ele procurou o glutamato em alimentos além de alga marinha. Dito e feito, ele encontrou altas concentrações em carne e peixe; queijos, especialmente queijo parmesão; e até no leite materno. (Ele também encontrou em certas plantas, como tomates e aspargos.) Essa descoberta fez sentido: adicionar até mesmo pequenas quantidades desses alimentos a pratos torna-os mais agradáveis e completos.

Este trabalho levou Ikeda a se perguntar por que saboreamos o umami em primeiro lugar. Todos os outros sabores básicos nos alertam para algo bom ou ruim na comida. Em geral, doçura significa energia de carboidratos; salinidade significa nutrição mineral; acidez significa ácidos, que são comuns em alimentos fermentados ou em decomposição; e amargor significa compostos alcalinos, que são comuns em plantas venenosas. Então, o que o umami sinaliza? Proteínas. O glutamato é um aminoácido, um dos blocos de construção das proteínas. Então, ao desenvolver um gosto pelo umami, os seres humanos poderiam detectar esse recurso escasso. De fato, podemos sentir o gosto do glutamato em concentrações 6 e 16 vezes menores, respectivamente, do que açúcar ou sal, indicando quão importante era encontrar proteína para nossos ancestrais. (Estranhamente, a maioria dos outros aminoácidos tem sabor doce ou amargo para nós, tornando o glutamato a melhor escolha como imitação de proteína). Cientistas no início dos anos 2000 finalmente colocaram a perspicácia de Ikeda em uma posição sólida, localizando receptores especializados em glutamato na língua humana.

Ikeda partiu para comercializar sua descoberta. A maioria dos japoneses na época tinha uma vida difícil como fazendeiros, e suas refeições consistiam basicamente de arroz e legumes. Ikeda pensou que criar um tempero baseado no glutamato tornaria a comida mais saborosa.

Por alguma razão, Ikeda decidiu não usar algas marinhas; em vez disso, ele usou trigo para produzir em grande quantidade o glutamato. Era um trabalho bagunçado e trabalhoso, mas em março de 1909, apenas dois anos depois de iniciar sua pesquisa, Ikeda tinha cristais isolados com 85% de pureza. Os trabalhadores então os esmagavam com martelos, borrifavam um pouco de sal e empacotavam o pó para venda. Ikeda batizou o tempero de Ajinomoto, significando em japonês “na origem do sabor”.

Hoje conhecemos a Ajinomoto por um nome diferente, glutamato monossódico ou GMS. É um dos temperos mais populares no mundo: os seres humanos consomem 2,2 bilhões de quilos por ano em todo o mundo, quase meio quilo por pessoa. (A maior parte do GMS é produzida atualmente usando fermentação bacteriana). E não é de admirar que seja tão popular. Como Ikeda sentiu, o umami satisfaz uma fome profunda dentro de nós. Muitas crianças de hoje aprendem que existem apenas quatro sabores distintos. Mas passe-lhes um pedaço de queijo ou um prato de sopa, e suas línguas lhes dirão outra coisa.

Texto escrito por Sam Kean.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘The Science of Satisfaction’ com autorização oficial dos detentores dos direitos. Revisado por: Kelly Vargas e Kamilla Vera.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

Mais textos:
qual é o gosto de um pouco de DNA?

Feito pelo homem: uma história da vida sintética

origem da vida e a química
A criação de um homúnculo, um humano em miniatura artificial, de uma edição de 1899 do Fausto de Goethe.

O escritor de ciência Philip Ball mergulha no mito, na história e na ciência para desvendar as raízes de nossos medos da vida artificial.

Fazer a vida artificial não era uma dificuldade tão grande na antiguidade quanto é para nós. Qualquer um deveria ser capaz de fazer isso com a receita certa, assim como assar pão. O poeta romano Virgil descreveu um método para fazer abelhas sintéticas, uma prática conhecida como bougonia, que envolvia espancar um pobre bezerro até a morte, tapar o nariz e a boca e deixar a carcaça sobre uma cama de tomilho e paus de canela. “Criaturas criadas maravilhosamente aparecem”, escreveu ele, “primeiro sem membros, mas logo com asas”.

Isso era, é claro, simplesmente uma expressão da crença geral na geração espontânea: a ideia de que os seres vivos poderiam surgir do nada dentro de uma matriz fértil de matéria em decomposição. Cerca de 300 anos antes, Aristóteles, em seu livro Sobre a geração de animais, explicou como esse processo produziu vermes, insetos e camundongos. Ninguém duvidava que fosse possível, e ninguém temia também (além da inconveniência); ninguém estava “brincando de Deus”, fazendo uma nova vida dessa maneira.

O furor que algumas vezes acompanhou a nova ciência da biologia sintética – a tentativa de reestruturar os organismos vivos como se fossem máquinas para nós, ou para construí-los a partir do zero a partir das partes componentes – deriva de um constructo decididamente moderno, um “Reverência pela vida.” No passado, os receios sobre esse tipo de arrogância tecnológica eram reservados principalmente para propostas de criação de seres humanos por meios artificiais – ou, como diriam os gregos, pela téchne.

E se a ideia de fabricar os seres humanos carregava um sopro do proibido na antiguidade, a razão tinha mais a ver com uma desconfiança geral da techné do que com a desaprovação da criação de pessoas. Havia uma sensação de que as máquinas – o que os gregos chamavam de mechanomai – eram artifícios dúbios que faziam as coisas funcionarem de maneira contrária à natureza. Na física de Aristóteles, objetos pesados ​​eram naturalmente aptos a descer, enquanto as máquinas podiam forçá-los fazer o oposto. Platão, professor de Aristóteles, desconfiava de toda arte (seja a pintura ou invenção) como uma imitação enganosa da natureza.

Como esses antigos preconceitos contra a techne ainda persistiam no século XVII, o filósofo inglês Francis Bacon achou necessário oferecer uma firme defesa do artificial. Ele não foi totalmente bem sucedido, a mesma desconfiança do “artificial” e “sintético” persiste ainda hoje. Parte da antipatia que a biologia sintética enfrentou decorre desse viés de longa data. Mas outra fonte arraigada da desconfiança vem da teologia cristã do final da era medieval, na qual a téchne arrogante que adulterou a vida humana arriscou invocar a ira de Deus. Na versão moderna e secular, a sacralidade da vida humana expandiu-se para abranger toda a natureza – e nós arriscamos a condenação da natureza, atrevendo-nos a intervir nos seres vivos. Esse é o tipo de transgressão agora implicado por uma das objeções comuns às pretensões da biologia sintética: seria “antinatural”.

A barganha faustiana
Quando os teólogos desaprovavam as alegações dos alquimistas de que podiam fazer um ser artificial conhecido como homúnculo, seu raciocínio não era necessariamente o que imaginamos. A acusação não era realmente de brincar de Deus, mas sim de forçar a mão de Deus. Pois embora possamos ser capazes de animar a matéria deste modo misterioso, somente Deus poderia dar-lhe uma alma. Deus teria então que intervir para alimentar o homúnculo? E será que, não tendo nascido da linhagem de Adão, estaria livre do pecado original e, portanto, não teria necessidade da salvação de Cristo?

Essas eram as questões que preocupavam os clérigos. Talvez também tenham incomodado o homúnculo: o criado pelo assistente de Fausto, Wagner, no relato de Goethe daquela velha história, anseia por ser totalmente humano, já que só então ele pode escapar do recipiente de vidro em que foi feito. “Eu mesmo desejo nascer”, diz ele.

Luigi e Giovanni Aldini – Galvanizando Corpos de Criminosos
experimentos realizados por aldini
Ao escrever Frankenstein , Mary Shelley recorreu à ciência de seu tempo, incluindo a experimentação elétrica de Luigi Galvani e seu sobrinho Giovanni Aldini, cujos temas de teste incluíam os cadáveres de criminosos executados, como mostrado nesta ilustração de 1804. (Fonte:Biblioteca Wellcome, Londres)

A lenda de Fausto, que remete ao mágico bíblico Simon Magus, que lutou com magia contra São Pedro, fornece a pedra de toque para os medos dos cientistas ultrapassarem a marca e, sem querer, liberarem forças destrutivas. Fausto era, naturalmente, o modelo do mais famoso conto cautelar da ciência que se intrometia na criação da vida: o Frankenstein de Mary Shelley. O romance, publicado pela primeira vez anonimamente em 1818 com um prefácio de Percy Shelley (marido de Mary, que alguns suspeitavam ser o autor), reinventa o mito de Fausto para a era da ciência, com base na biologia do avô de Charles Darwin, Erasmus, a química de Humphry Davy e a fisiologia elétrica do italiano Luigi Galvani. Percy Shelley escreveu que as especulações de Erasmus Darwin, expostas em obras como Zoonomia, ou as Leis da Vida Orgânica (1794), apoiaram a ideia de que a reanimação de matéria morta de Victor Frankenstein “não era de ocorrência impossível”. E o palestrante de popularização da ciência Adam Walker, amigo do químico Joseph Priestley, escreveu que os experimentos de Galvani sobre fisiologia elétrica demonstraram a “relação ou afinidade [da eletricidade] com o princípio vivo”. Fazer vida estava no ar no início do século 19, e Frankenstein parece, em retrospecto, quase inevitável.

O médico de Mary Shelley e sua criação monstruosa são agora invocados como uma reação automática a todas as novas intervenções científicas na vida. Eles apareceram com destaque na cobertura da mídia sobre fertilização in vitro (FIV) e clonagem (“O mito de Frankenstein se torna realidade”, escreveu o New York Times sobre a fertilização in vitro), modificação genética de plantas (“Frankenfoods”) e agora a criação de formas de vida ”por biologia sintética (“ Frankenbugs ”). A mensagem é clara: a tecnologia assim rotulada é algo antinatural e perigoso, e garante nossa firme desaprovação.

Lodo primordial
A pré-história da biologia sintética não é toda faustiana. A aparente inclinação da vida para brotar da matéria sem vida estimulou a noção de um princípio animador que estava difundido no mundo, pronto para acelerar as substâncias quando as circunstâncias eram clementes. Nessa visão, uma propriedade que ficou conhecida como a “força vital” inerente aos próprios constituintes – os corpúsculos, ou moléculas – da matéria e da vida apareceu gradualmente quando um número suficiente dela se acumulou. Em sua estranha história D’Alembert’s Dream (1769), o filósofo francês Denis Diderot compara o movimento coerente de massas como “pontos de vida”, semelhantes a moléculas, a um enxame de abelhas, do tipo que Virgil acreditava que poderia ser evocado de uma vaca morta. Como o contemporâneo de Diderot, o naturalista francês George-Louis Leclerc, o conde de Buffon,

A vida do todo (animal ou vegetal) parece ser apenas o resultado de todas as ações, todas as pequenas vidas separadas. . . de cada uma dessas moléculas ativas cuja vida é primitiva e aparentemente indestrutível.

O vitalismo tem sido frequentemente ridicularizado pelos cientistas hoje como uma espécie de superstição pré-científica, mas na verdade esse tipo de hipótese provisória é precisamente o que é necessário para que a ciência progrida em um problema difícil. Ao supor que a vida era imanente na matéria, os primeiros cientistas conseguiram naturalizá-la e distingui-la de uma agente misteriosa, dado por Deus, e assim torná-la um objeto apropriado para estudo científico.

Os primeiros químicos acreditavam que o segredo da vida deveria residir na composição química: animar a matéria era apenas uma questão de obter a mistura certa de ingredientes.

Dito isto, não deveríamos nos surpreender que a síntese de ureia de Friedrich Wöhler (uma molécula que até agora apenas criaturas vivas poderiam produzir) em 1828 a partir de um sal de amônio não representasse uma ameaça profunda ao vitalismo, apesar de ser frequentemente citada como o começo do fim para a teoria. O potencial vital das moléculas era tudo uma questão de grau; então não havia motivo real para surpresa de que uma molécula associada a seres vivos pudesse ser feita a partir de matéria aparentemente inanimada. Na verdade, a crescente apreciação durante o século 19 de que “química orgânica” – a ciência das moléculas baseadas principalmente em carbono produzidas por e constituindo seres vivos – era contígua ao resto da química, apenas aprofundou o enigma do que é a vida, enquanto ao mesmo tempo, reforçava a visão de que a vida era uma questão para os cientistas e não para os teólogos.

Os primeiros químicos acreditavam que o segredo da vida deveria residir na composição química: animar a matéria era apenas uma questão de obter a mistura certa de ingredientes. Em 1835, o anatomista francês Félix Dujardin afirmou ter feito a substância viva primordial esmagando animais microscópicos em uma polpa gelatinosa. Quatro anos mais tarde, o fisiologista tcheco Jan Purkinje deu um nome a essa substância primitiva: o protoplasma, que se acreditava ser algum tipo de proteína e que estava imbuído da capacidade de se mover por conta própria.

Na década de 1860, o antigo defensor de Charles Darwin, Thomas Henry Huxley, afirmou ter encontrado essa substância primitiva, que ele alegava ser a “base física da vida”, ou “um tipo de matéria que é comum a todos os seres vivos”. Ele identificou essa substância com uma espécie de limo em que os organismos residentes no fundo do mar pareciam estar incorporados. O limo continha apenas os elementos carbono, hidrogênio, oxigênio e nitrogênio, disse Huxley. (Na verdade, seu protoplasma acabou sendo o produto de uma reação química entre a água do mar e o álcool usado para preservar os espécimes marinhos de Huxley.) Enquanto isso, o principal defensor alemão do darwinismo, Ernst Haeckel, declarou que existe uma espécie de força vital em toda a matéria, até o nível de átomos e moléculas; a descoberta da organização molecular em cristais líquidos na década de 1880 pareceu-lhe justificar a hipótese.

Haeckel estava, pelo menos, certo em se concentrar na organização. Desde que o fisiologista alemão Theodor Schwann propôs, em meados do século XIX, que toda a vida é composta de células, o conceito de protoplasma era confrontado com a necessidade de explicar a estrutura ordenada da vida: a gelatina não era suficiente. A geração espontânea foi finalmente eliminada pelos experimentos de Louis Pasteur e outros, mostrando que as misturas estéreis permaneciam assim, se fossem seladas para impedir o acesso aos microrganismos que Pasteur identificara sob o microscópio. Mas o vitalismo não morreu no processo, em vez disso transformou-se na noção de “organização orgânica” – a misteriosa propensão dos seres vivos a adquirir estrutura e coordenação entre seus componentes moleculares, que os biólogos começaram a discernir quando inspecionaram células sob o microscópio. Em outras palavras, a organização da vida aparente na escala visível se estendia não apenas ao nível celular, mas além dela. A noção de um protoplasma universal, entretanto, tornou-se insustentável quando a diversidade de componentes moleculares da vida, em particular a gama de enzimas proteicas, se tornou aparente através da análise química no início do século XX.

A gelatina primitiva tinha uma notável canção de cisne. Em 1899, o Boston Herald publicou a manchete “Criação da Vida… Animais Inferiores Produzidos por Meios Químicos ”. Deixando de lado o corolário possivelmente irônico apresentado na manchete “Imaculada Conceição Explicada”, o jornal descreveu a pesquisa do fisiologista alemão Jacques Loeb, que estava trabalhando no centro de biologia marinha em Woods Hole, Massachusetts. Loeb, de fato, não fizera nada tão notável; ele havia mostrado que um ovo de ouriço-do-mar não fertilizado podia ser induzido a sofrer partenogênese, dividindo-se e desenvolvendo-se pela exposição a certos sais. A visão mais ampla de Loeb, no entanto, preparou o palco para uma entrevista em 1902 que o relata dizendo:

Eu queria pegar a vida em minhas mãos e brincar com ela. Eu queria lidar com isso em meu laboratório como faria com qualquer outra reação química – para iniciá-la, pará-la, modificá-la, estudá-la sob todas as condições, para direcioná-la à minha vontade!

As palavras de Loeb soam quase como o sonho enlouquecido de um cientista louco de Hollywood. A Scientific American chegou a apelidar Loeb de “o Frankenstein Científico”. Não é preciso dizer que Loeb nunca foi capaz de fazer nada do tipo; mas seu desejo de controlar a vida através de uma perspectiva de engenharia se mostrou presciente, e foi mais proeminentemente apresentado em seu livro The Mechanistic Conception of Life (1912).

Geração espontânea
geração espontânea - arte antiga
Um exemplo de geração espontânea, como ilustrado no relato de 1605 de plantas míticas, do jurista e naturalista francês Claude Duret, Histoire admirable des plantes et herbes esmerveillables et miraculeuses en nature. (Fonte: Biblioteca Wellcome, Londres)

No circuito
O sonho de Loeb de “brincar” com a vida não poderia ser realizado até que tivéssemos uma melhor concepção dos componentes da vida. Encontrar esses componentes foi a missão da biologia molecular do século 20, que emergiu em grande parte dos estudos da estrutura química e composição de proteínas usando a cristalografia de raios X, iniciada de 1930 a 1950 por J. Desmond Bernal, William Astbury, Dorothy Hodgkin, Linus Pauling e outros. Essas moléculas pareciam máquinas minúsculas, projetadas e moldadas pela evolução para fazer seu trabalho.

Mas é claro que a biologia molecular não era apenas sobre proteínas. O que realmente mudou o jogo foi a descoberta do que parecia ser a fonte da organização milagrosa da vida. Não era, como muitos previram, uma proteína que transportava as informações necessárias para regular a célula, mas sim um ácido nucléico: o DNA. Quando James Watson e Francis Crick usaram os dados cristalográficos de raios X de outros, incluindo o de Rosalind Franklin, para deduzir a forma helicoidal dupla da molécula em 1953, nem todos os cientistas acreditavam que o DNA fosse o veículo dos genes que aparentavam passar instruções de uma geração para a próxima. O trabalho de Watson e Crick mostrou como essa informação foi codificada – em uma sequência digital de blocos moleculares ao longo da hélice – e, além disso, implicou um mecanismo pelo qual a informação poderia ser copiada durante a replicação.

Se essas fossem de fato “instruções para a vida”, então a química poderia ser usada para modificá-las. Esse foi o negócio da engenharia genética, que decolou na década de 1970, quando os cientistas descobriram como usar enzimas naturais para editar e colar partes do DNA “recombinante”. Os biólogos moleculares estavam agora pensando na vida como uma forma de engenharia, passível de design.

A biologia sintética às vezes tem sido chamada de “engenharia genética que funciona”: usando os mesmos métodos biotecnológicos de recortar e colar, mas com uma sofisticação que obtém resultados. Essa definição é talvez um pouco injusta porque a engenharia genética “antiquada” funcionou perfeitamente para alguns propósitos: ao inserir um gene para fazer insulina em bactérias, por exemplo, esse composto, vital para o tratamento da diabetes, pode ser feito por fermentação de microorganismos, em vez de extrair de vacas e porcos. Mas intervenções mais profundas nos processos químicos dos organismos vivos podem exigir muito mais do que a adição de um gene ou dois. Tais intervenções são o que a biologia sintética pretende alcançar.

Tomemos a produção da droga antimalárica artemisinina, cuja descoberta foi o tema do Prêmio Nobel 2015 em medicina. Esta molécula oferece a melhor proteção atualmente disponível contra a malária, funcionando efetivamente quando o parasita da malária desenvolveu resistência à maioria dos outros antimaláricos comuns. A artemisinina é extraída de um arbusto cultivado para esse fim, mas o processo é lento e caro. (Os preços caíram recentemente.) Ao longo da última década, pesquisadores da Universidade da Califórnia, em Berkeley, tentaram manipular a maquinaria de fabricação de artemisinina da planta em células de levedura, de modo que a droga pudesse ser produzida a baixo preço pela fermentação. É complicado porque a molécula é produzida em um processo de várias etapas envolvendo várias enzimas que têm que transformar o ingrediente bruto, etapa por etapa, na molécula final complexa, com cada etapa sendo conduzida no momento certo. Com efeito, isso significa equipar a levedura com os genes e os processos de regulação necessários para uma nova via metabólica, ou sequência de reações bioquímicas – uma abordagem chamada engenharia metabólica, equivalente ao tipo de reaproveitamento planejado de um organismo que é um objetivo central da biologia sintética.

A síntese de artemisinina em levedura (mais propriamente, semissíntese desde que começa com um precursor da molécula de droga colhida de fontes naturais) é frequentemente chamada de garoto propaganda da biologia sintética – não apenas porque funciona (o processo agora está entrando na produção comercial), mas porque tem objetivos inequivocamente benevolentes e valiosos. Criar produtos úteis, dizem os defensores, é tudo o que eles estão tentando fazer: não criar monstruosidades não-naturais no estilo Frankenstein, mas a produção eficiente de drogas e outras substâncias necessárias, idealmente usando caminhos bioquímicos em organismos vivos como uma alternativa aos possíveis processos tóxicos, carregados de solvente, da química industrial.

Imagine bactérias e leveduras projetadas para produzir combustíveis “verdes”, como hidrogênio ou etanol, alimentados por matéria vegetal e eliminando a necessidade de minerar e queimar carvão e petróleo. Imagine plásticos facilmente biodegradáveis ​​produzidos desta maneira, e não a partir de petróleo. Craig Venter, que fez seu nome (e dinheiro) desenvolvendo tecnologias de decodificação do genoma, fez de tais objetivos um elemento central da pesquisa realizada em seu J. Craig Venter Institute (JCVI) em Rockville, Maryland. Em abril passado, cientistas da JCVI anunciaram que inventaram maneiras de projetar microalgas chamadas diatomáceas, usando os métodos da biologia sintética, para que elas juntem bactérias e leveduras como veículos para a fabricação de biocombustíveis e outros produtos químicos.

Na verdade, a JCVI está tentando criar fábricas vivas microscópicas. O mesmo motivo sustentou a criação de Venter de um suposto “organismo sintético” em 2010, outro dos marcos da biologia sintética – o Frankenbug, nas palavras de alguns oponentes da manipulação genética. Se esses micróbios podem ser considerados verdadeiramente artificiais é uma questão de debate. Os cientistas do JCVI usaram métodos químicos bem estabelecidos para construir um genoma inteiro a partir do DNA, baseado no de uma bactéria natural chamada Mycoplasma mycoides, mas com algumas sequências genéticas adicionadas e outras omitidas. Eles então pegaram células de uma bactéria Mycoplasma intimamente relacionada, extraíram seu DNA original, inseriram as substituições artificiais e “carregaram” as células modificadas como se fossem computadores com um novo sistema operacional. As células funcionaram bem com seu novo DNA sob medida.

O objetivo não era uma demonstração arrogante de controle sobre a vida, mas uma verificação de que as células bacterianas podem ser equipadas com novas instruções que podem ser uma versão simplificada de suas naturais: um tipo de chassi mínimo no qual novas funções podem ser projetadas e construídas. O funcionamento genético completo das bactérias mais simples não é completamente compreendido, mas se os genomas deles puderem ser simplificados para remover todas as funções que não são essenciais para sustentar a vida, a tarefa de projetar novos caminhos e processos genéticos se torna muito mais fácil. Em março deste ano, a equipe do JCVI descreveu uma versão “mínima” da bactéria Mycoplasma .

A linguagem dessa nova ciência é a do engenheiro e designer: a linguagem do artesão, não do filósofo natural que descobre como a natureza funciona. Essa maneira de pensar a vida remonta, pelo menos, a René Descartes, que concebeu o corpo como uma máquina, um mecanismo de alavancas, polias e bombas. No tempo de Descartes, essa visão mecânica da vida não levaria a nada mais do que simulacros mecânicos grosseiros: os autômatos feitos por relojoeiros e inventores, engenhocas engenhosas e misteriosas em si, mas que no final não são mais animadas que os ponteiros de um relógio. Mas a biologia sintética traz a filosofia newtoniana, mecanicista, para as próprias coisas da vida, para os genes e enzimas das células vivas: eles são agora os dentes e engrenagens que podem ser encaixados, impulsionados por molas, lubrificados e montados em mecanismos moleculares. Então não temos uma mera simulação da vida, mas a própria vida.

A linguagem dessa nova ciência é a do engenheiro e designer: a linguagem do artesão, não do filósofo natural que descobre como a natureza funciona.

No entanto, a linguagem atual não é tanto a mecânica e a mecânica do relógio, mas o equivalente moderno: nossa mais recente tecnologia de ponta, ou seja, eletrônica e computação. Desde que os biólogos François Jacob, Jacques Monod e outros mostraram na década de 1960 como os genes são regulados para controlar sua atividade, a genética adotou o léxico da teoria dos sistemas cibernéticos, que foi desenvolvido para entender como controlar sistemas tecnológicos complexos e encontrar aplicações em eletrônica, engenharia, robótica, comunicações e computação. Ou seja, diz-se que diferentes componentes do genoma estão ligados em circuitos e regulados por loops e interruptores de feedback à medida que passam sinais de uma unidade para outra.

máquina humana
Der Mensch als Industriepalast (Homem como um Palácio industrial), um cartaz em tamanho natural encomendado pelo médico e escritor alemão Fritz Kahn em 1926, imagina o corpo humano como uma fábrica química em miniatura. (Fonte: Biblioteca Nacional de Medicina)

Nessa visão, os genomas desempenham seu papel de organizar e regular a vida de maneira modular e hierárquica, assim como os componentes eletrônicos são conectados a elementos básicos do circuito, como amplificadores ou dispositivos lógicos, que por sua vez são organizados de modo a permitir funções de nível superior, como armazenamento de memória e recuperação ou sincronização de sinais.

Essa noção de circuito genético é a plataforma conceitual sobre a qual a biologia sintética está sendo construída. No esquema BioBricks criado por pesquisadores do Instituto de Tecnologia de Massachusetts (MIT), os genes podem ser combinados e compilados em um Registro de Peças Biológicas Padrão: um catálogo de acesso aberto de circuitos genéticos biológicos que você pode ler como faria com um catálogo de componentes eletrônicos da RadioShack, procurando os dispositivos que você precisa para realizar seu projeto. O objetivo é que, com atenção suficiente à padronização, essas partes biológicas funcionem como “plug and play”, sem precisar de muito refinamento e ajuste para cada aplicação.

Este conceito plug-and-play funciona notavelmente bem. Os primeiros triunfos para a biologia sintética incluíram a demonstração de circuitos gênicos que agiam como osciladores (permitindo que a taxa de síntese de uma proteína fosse ativada e diminuída periodicamente) e comutadores (permitindo a ativação e desativação controláveis ​​da síntese de proteínas usando um produto químico ou sinal luminoso). Dessa forma, os pesquisadores criaram bactérias que se acendiam periodicamente por meio de uma proteína fluorescente cuja produção estava ligada a um circuito oscilador genético. Desde 2004, a equipe do MIT promove um evento anual chamado de competição internacional de máquinas geneticamente modificadas, no qual as equipes de alunos competem para apresentar o mais inovador projeto de biologia sintética. As inscrições incluíram “E. chromi ”, E. coli geneticamente modificada que pode mudar para todas as cores do arco-íris em resposta a sinais específicos (como gases tóxicos ou contaminantes de alimentos), células de combustível microbianas que geram eletricidade pela E. coli modificada e fotografia bacteriana usando E. Coli modificada para produzir produtos químicos que tornam um filme preto em resposta à luz.

Vida como informação
A orientação de engenharia de sistemas da biologia sintética reflete a mais recente mudança em nossa visão da vida. Na era da alquimia, a vida era vista como uma espécie de espírito vital, uma força oculta que permeava a natureza. Newton e Descartes fizeram disso uma questão de mecânica; Galvani transformou-a em um fenômeno elétrico, enquanto o surgimento da química no século XIX fez com que se tratasse de composição química. Mas desde que a descoberta de Watson e Crick casou com a genética neodarwiniana da biologia molecular, a vida tem sido cada vez mais encarada como uma questão de informação e é frequentemente descrita como um código digital impresso na memória molecular que é a sequência genética do DNA. Redesenhar a vida, como a engenharia da computação, é uma questão de codificação e design de circuitos.

Analisados ​​historicamente, parece provável que nossa visão atual da vida se torne tão obsoleta quanto as antigas. Mas talvez não devêssemos ver essa sucessão simplesmente como uma substituição de uma ideia por outra. Alguns aspectos de todos os modelos antigos ainda podem ser defendidos: uma metáfora de máquina funciona muito bem, pelo menos para as proteínas motoras que movem objetos ao redor da célula. E o conceito de organização celular agora faz mais sentido à luz das ideias contemporâneas sobre a auto- organização molecular. O mesmo certamente será verdade para o modelo de vida como uma forma de computação. No entanto, a insistência em uma equivalência simples entre o computador e a célula é claramente inadequada. A velha imagem dos genes como unidades fundamentais de informação traduzidas de maneira linear e única em proteínas que agem como cavalos de batalha moleculares da biologia é demasiado simples. Os genomas não são modelos de um organismo mais do que “livros da vida”. A vida tem uma lógica que ainda temos que discernir, e não parece mapear facilmente em nenhuma tecnologia atualmente conhecida. Por esta razão, permanecemos distantes de qualquer síntese genuinamente inovadora da vida.

Brincando de Deus?
Podemos nos surpreender que as primeiras tentativas de fazer “vida sintética” tenham despertado tão pouca controvérsia. Mas foram os insights da biologia moderna – da unidade da vida no nível molecular – que tornaram controverso o “fazer a vida”. Agora, intervir nos processos fundamentais de qualquer coisa viva traz implicações para nós também. Talvez menos obviamente, essas implicações dependem da secularização de nossa visão da vida. Somente quando os seres humanos não são mais seres privilegiados, favorecidos e animados por Deus, a engenharia de todas as coisas vivas parece problemática. A sacralidade da vida humana foi generalizada para uma deificação da natureza precisamente porque nossa era não é mais governada moralmente pela doutrina cristã. Portanto, não é de se surpreender que as acusações de “brincar de Deus” com a biotecnologia provenham menos dos círculos religiosos – não há base teológica para o conceito – do que das seculares.

No entanto, a religião é apenas uma forma de mito – e o mito mais amplo ainda importa. Escrevendo em 1924 sobre a criação “artificial” da vida humana tanto por fertilização in vitro como por hipotética gestação fora do útero, o biólogo J. B. S. Haldane declarou que

O inventor químico ou físico é sempre um Prometheus. Não há grande invenção, do fogo ao voo, que não foi saudado como um insulto a algum deus.

Ele estava certo, mas os cientistas tendem a esquecer o porquê. Eles lamentam a tendência de lançar avanços científicos em termos míticos para que a sombra de Fausto e Frankenstein caia sobre todos os desenvolvimentos na modificação e gênese da vida. Essa frustração é compreensível: a metáfora “Franken” é um jornalismo preguiçoso, um pedaço de sensacionalismo pronto para ser usado para produzir um frisson sedutor (junto com uma justa indignação) nos leitores. Mas uma das funções do mito é dar forma a medos e sonhos que mal podemos articular.

A vida tem uma lógica que ainda temos que discernir e não parece mapear facilmente em nenhuma tecnologia atualmente conhecida. Por esta razão, permanecemos distantes de qualquer síntese genuinamente inovadora da vida.

A biologia sintética parece ir ao coração de uma das mais profundas e antigas dessas imaginações: a criação e o controle da vida através da techné . Esse grande objetivo pode parecer muito longe de fazer uma bactéria que pisca. Mas a biologia sintética tem um potencial que vai muito além: esse campo pode não apenas ser transformador na fabricação de materiais, medicamentos e muito mais, mas poderia reformular nossa concepção do que são organismos vivos, o que eles podem ser e como podemos intervir para moldá-los. Não deveríamos achar surpreendente se tais poderes despertem velhos mitos e associações. Para navegar no debate cultural, precisamos estar cientes da influência histórica de nossos mitos, suas mensagens morais ocultas e os preconceitos e premonições que elas invocam. Nunca houve um Fausto que negociou com o diabo, o monstro de Frankenstein nunca foi criado, o Admirável Mundo Novo nunca chegou – mas a verdadeira razão pela qual ainda estamos invocando essas imagens é que elas ainda se encaixam nas formas de nossos pesadelos.

Texto escrito por Philip Ball.

Traduzido por Prof. Dr. Luís Roberto Brudna ( luisbrudna@gmail.com ) do original ‘Man Made: A History of Synthetic Life‘ com autorização oficial dos detentores dos direitos. Revisado por: Natanna Antunes, Kelly Vargas e Larissa Gomes.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

Guerra Química: Do Campo de Batalha Europeu ao Laboratório Americano

imperial art museum
Oppy Wood, 1917, Evening (1918), do artista britânico John Nash. Nash lutou na guerra de novembro de 1916 a janeiro de 1918.

Durante a Primeira Guerra Mundial, os efeitos do gás venenoso se estenderam muito além do campo de batalha chegando até laboratórios, fábricas e governo.

O observador.
Numa noite de inverno, em 1916, James Robb Church embarcou na balsa Sussex, navegando da Inglaterra para a França. Com a guerra na Europa, a jornada provavelmente era tensa. O navio estava tão cheio que alguns passageiros se amontoavam no convés para a viagem de cinco horas. Dois meses depois, o Sussex seria torpedeado por um submarino alemão, mas naquela noite a viagem pelo canal transcorreu sem problemas.

Os Estados Unidos até então haviam se mantido fora do conflito na Europa, de modo que, para um americano como Church, a guerra continuava distante. Mas naquele inverno ele foi enviado para a França para reunir informações sobre hospitais aliados, rotas de ambulâncias e postos médicos. Church era um cirurgião experiente cujo serviço na guerra hispano-americana lhe rendera uma medalha de honra. O combate na Europa era diferente, no entanto. Ao longo da Frente Ocidental, ele encontrou homens feridos que sofreram não apenas de bombas e balas, mas também de substâncias químicas que queimavam como fogo nos pulmões e na pele.

Church chegou a Paris antes do amanhecer e seu primeiro encontro direto com a guerra aconteceu naquela noite. Ele foi ver um filme e, quando saiu do cinema, a cidade estava encoberta pela proteção da escuridão. Todos pareciam estar esperando para ouvir o apito das bombas alemãs. “Havia multidões de pessoas nas ruas, observando os céus”, escreveu Church mais tarde. “Riscos brancos cruzavam os céus e parecia haver uma atenção extasiada no ar das pessoas sussurrando em francês.”

Sob ordens de seus superiores, Church logo procurou o conflito. Nas trincheiras perto de Verdun, ele chegou a 12 metros do solo ocupado pelos alemães e ouviu explosões nas proximidades. Uma delas caiu num abrigo que ele acabara de deixar, matando o médico francês que o acompanhara. Na maior parte, porém, as colinas da França estavam quietas. “Estava muito quieto, a quietude dos lugares altos acentuada pela tensão de sempre esperar o grito de granadas e a corrida violenta do ataque da infantaria. Parecia domingo: o silêncio do domingo.”

No final de uma trincheira, Church notou um detalhe aparentemente sem importância: uma buzina de automóvel destacada. “Quando isso gritava, era melhor colocar a máscara”, escreveu ele, “pois significava que o gás mortal cinza e verde estava chegando”.

Os gases tóxicos tornaram-se um campo urgente de investigação científica, uma indústria próspera e, na mente de alguns, uma realidade necessária e até humana.

Este foi um pequeno sinal de uma mudança crucial na guerra. A França havia experimentado gases lacrimogêneos primeiro, em pequena escala; mas foi a Alemanha, líder mundial em química, que usou armas químicas com fervor. Tratados internacionais baniram as bombas de gás venenoso em 1899, mas a Alemanha argumentou que os cilindros de gás ainda eram permitidos. De qualquer maneira, uma vez que gases mortais entraram no campo de guerra, bombas de gás foram adotadas por ambos os lados. Um ano depois da Alemanha ter usado gás cloro pela primeira vez, em abril de 1915, em Ypres, as armas químicas haviam se tornado uma parte fundamental do arsenal das Potências Aliadas e Centrais.

Histórias de guerra de gás ainda conseguem chocar e nos surpreender. Se a guerra é um inferno, os ataques químicos da Primeira Guerra Mundial pareceram piores que o inferno. Essas armas raramente matavam – mas penetravam na roupa de um soldado, cobriam seu corpo com bolhas de queimaduras e irritavam e às vezes cegavam seus olhos. Church viu tudo isso em primeira mão.

As armas químicas são lembradas pelo medo e sofrimento que elas traziam para os campos de batalha, mas elas merecem uma reputação tão poderosa por sua transformação da ciência civil. Os Estados Unidos só haviam experimentado armas químicas indiretamente, através dos relatos de homens como Church. No entanto, a milhares de quilômetros da linha de frente, essas armas levaram os americanos a mobilizar um amplo aparato de pesquisa laboratorial, produção industrial e treinamento militar. Os gases tóxicos tornaram-se um campo urgente de investigação científica, uma indústria próspera e, na mente de alguns, uma realidade necessária e até humana. Seu impacto na frente doméstica persiste até hoje.

No início de 1917, Church e outro observador foram enviados de volta a Paris para participar de um curso de francês sobre gases asfixiantes. Seus relatórios descreviam a estrutura de cada “departamento de gás” criado pela França, Alemanha e Grã-Bretanha. “A guerra atual é tão diferente da luta anterior que os princípios diretivos da organização têm que ser absolutamente diferentes”, escreveu o colega de Church, Charles Flandin. “No que diz respeito ao gás, parece-me que a organização deveria ser menos militar que industrial”. Não seria necessário apenas proezas militares, mas também perícia química, médica e comercial.

Quando os Estados Unidos finalmente entraram na guerra, em abril de 1917, os relatórios de Church e Flandin lançaram as bases para o que gradualmente se tornou o Serviço de Guerra Química (CWS, em inglês). De acordo com as recomendações dos dois observadores, a primeira agência colocada no comando não era uma organização militar. A maioria de seus funcionários de alto escalão eram engenheiros e químicos.

O diretor
Em fevereiro de 1917, a entrada dos americanos na guerra parecia inevitável. O presidente Woodrow Wilson enviou um pedido de apoio às agências do governo dos EUA. Este pedido chegou à mesa de Van H. Manning, um homem inventivo e teimoso que dirigiu o relativamente novo Ministério de Minas.

Manning convocou imediatamente uma reunião de sua equipe. No ano anterior, seu departamento havia trabalhado em problemas como a determinação da umidade no coque, a instalação de iluminação elétrica em minas e a prevenção de explosões de pó de carvão. Também organizou operações de resgate após grandes acidentes nas minas. À primeira vista, essas parecem ser as preocupações domésticas de uma agência civil – pouco relevante para uma guerra mundial. No encontro, no entanto, um engenheiro chamado George S. Rice sugeriu que o departamento poderia aproveitar sua experiência com gases tóxicos de minas para combater os gases venenosos lançados contra as tropas aliadas.

De certo modo, as minas eram as trincheiras da frente doméstica. Elas eram apertadas, claustrofóbicas e muitas vezes fatais, causando uma média de 2.000 mortes por ano entre 1900 e 1910. Muitos mineiros morreram não por colapso da estrutura, mas por gases venenosos que saíam do sedimento ou subiam dos incêndios das minas.

De certo modo, as minas eram as trincheiras da frente doméstica. Elas eram apertadas, claustrofóbicas e muitas vezes fatais, causando uma média de 2.000 mortes por ano entre 1900 e 1910.

Manning escreveu ao secretário do interior com sua oferta: o Ministério de Minas poderia ajudar os militares no desenvolvimento de defesas contra gases tóxicos. Por muitos anos, pesquisadores do Ministério de Minas desenvolveram máscaras de gás que filtravam com sucesso o ar tóxico através de carvão ativado poroso, pelo menos por algumas horas. Em uma época em que os mineiros ainda transportavam canários para as minas de carvão, essas máscaras representavam tecnologia avançada. A proposta de Manning foi rapidamente enviada aos líderes militares em Washington.

Dois meses depois, em 2 de abril, o presidente Wilson pediu ao Congresso que declarasse guerra à Alemanha. O Ministério de Minas foi imediatamente encarregado da defesa de gás. O Comitê Nacional de Pesquisa criou um Subcomitê Especial sobre Gases Nocivos para consolidar a perícia militar, médica e química. Essas eram as sementes de uma parceria sem precedentes: vastas áreas da ciência civil estavam sendo mobilizadas a serviço da guerra.

Os acadêmicos
Três dos primeiros recrutas de Manning eram químicos da American Sheet and Tin Plate Company, do Instituto de Tecnologia de Massachusetts e da Universidade Johns Hopkins. Ele enviou cada um para uma parte diferente do país para obter apoio. Em apenas dois meses, o Ministério de Minas obteve ofertas de apoio material e de pesquisa de 118 químicos em 3 corporações, 3 agências governamentais e 21 universidades. Constantemente, eles seriam atraídos para o esforço de guerra.

Como a agência ainda estava procurando espaço no laboratório, os químicos começaram com pesquisas independentes em suas instituições domésticas. Na Universidade de Michigan, os pesquisadores estudaram os efeitos do envenenamento por gás mostarda. A Universidade de Yale construiu um laboratório de toxicologia sob as arquibancadas de seu campo de atletismo. Em outros lugares, cientistas experimentaram o design de máscaras de gás, técnicas de produção em massa e a síntese de novos produtos químicos tóxicos.

Projetos independentes eram difíceis de gerenciar, e a equipe de Manning logo aceitou uma oferta de espaço da American University em Washington, DC, para centralizar a pesquisa. Em junho, o Departamento de Guerra e a Marinha pagaram US$ 175 mil para converter as salas de aula em laboratórios. Os químicos contratados pela agência começaram a chegar antes mesmo do espaço estar completo. Eles começaram seu trabalho cercados pelo barulho de carpinteiros, encanadores e eletricistas.

Tudo isso aconteceu enquanto os militares realizavam duas outras tarefas essenciais. Se as armas químicas não eram familiares para os químicos, elas eram ainda mais desconhecidas para os soldados. O Corpo de Engenheiros anunciava uma nova unidade militar, o Primeiro Regimento de Gás, baseado na Camp American University. Eles procuraram uma coorte inicial de 250 soldados, 30 químicos combatentes e vários recrutas técnicos. “Passou o tempo para qualquer discussão ética quanto à justeza de usar gás e chamas contra o inimigo”, insistiu um anúncio. “O fogo deles deve ser combatido com fogo mais quente.”

As tropas, entretanto, precisariam de uma fonte confiável de armas, máscaras de gás e roupas de proteção. O Departamento de Ordens do Exército começou a contratar empresas para a produção de produtos químicos tóxicos. Na cidade de Long Island, milhões de máscaras de gás foram produzidas, em grande parte por mulheres trabalhadoras. Enquanto isso, em Edgewood, Maryland, a apenas 80 quilômetros da American University, o exército construiu vários edifícios herméticos para encher projéteis com gás. Centralizou as operações ainda mais com um aglomerado de unidades massivas que sintetizavam gases tóxicos, do cloro e fosgênio ao infame gás mostarda.

Washington era agora o centro dos esforços americanos de guerra química, e o Ministério de Minas era a principal organização civil na pesquisa de gás venenoso. Décadas antes do conceito de meados do século XX do “complexo industrial-militar” e um quarto de século antes do mais famoso projeto de bomba nuclear, o financiamento federal reuniu centenas de cientistas e soldados no campus da American University. No final de 1917, o Departamento de Minas expandido empregava 277 civis. Um ano depois de estabelecer as operações no campus, a folha de pagamento incluiria mais de mil cientistas e técnicos.

Os alemães
Havia uma ironia no exército químico que estava sendo montado nos Estados Unidos. Em quase todas as frentes seguiu os passos dos químicos alemães.

Mesmo antes do início da guerra, os químicos alemães tentavam produzir uma substância militar fundamental: os nitratos sintéticos. Os nitratos eram a matéria-prima de explosivos e fertilizantes, e o suprimento da Alemanha era muito limitado para a guerra a longo prazo. Alguns dos melhores químicos alemães aderiram ao esforço do nitrato, incluindo Fritz Haber.

No começo de 1915, Haber estava liderando a pesquisa de gás venenoso da Alemanha. Da mesma forma que a rede de químicos norte-americanos que se desenvolveu alguns anos depois, o esforço de guerra alemão unificou a química industrial e acadêmica. Haber dirigiu um instituto acadêmico em Berlim, enquanto as fábricas de corantes da Bayer e a Hoechst Color Works ajudaram a mobilizar a indústria alemã de corantes para a guerra química.

Dezenas dos melhores químicos acabaram se juntando ao projeto alemão de gás. Propostas, como o plano de Haber para o uso do gás cloro como arma, foram analisadas por Walther Nernst, químico da Universidade de Berlim, e Carl Duisberg, diretor da Bayer. Quando as propostas foram aprovadas, Haber recrutou uma equipe de cientistas que incluía vários futuros laureados com Nobel. Assim como as fábricas de Edgewood, Maryland, a Bayer produzia produtos químicos tóxicos, inclusive gás mostarda.

As semelhanças entre os projetos de gás alemães e americanos não foram por acaso. Na época, a Alemanha era a líder mundial em química e os Estados Unidos dependiam de mão de obra e máquinas alemãs. Ainda em 1917, o fabricante de instrumentos americano Chester Fisher estava importando equipamentos de laboratório da Baviera – e enviando-os para laboratórios de gás venenoso na França.

O alemão-americano
Os laços entre a química alemã e americana foram ainda mais fortes na esfera industrial. Muitos dos fornecedores farmacêuticos e de corantes pré-guerra dos Estados Unidos eram, na verdade, ramos de corporações alemãs. Os americanos que queriam uma educação competitiva muitas vezes viajavam para universidades alemãs para estudar química, enquanto os químicos alemães que buscavam novas oportunidades vieram para a América. Durante a guerra, no entanto, os Estados Unidos subverteram e aproveitaram os recursos de sua competição alemã.

As táticas americanas ganham vida no estranho caso de William Beckers, que nasceu no Ruhr, o coração da indústria alemã e da produção de carvão. Beckers obteve um doutorado em química, serviu no exército alemão e foi contratado pela Bayer. A empresa o enviou para os Estados Unidos em 1902, quando ele ainda estava na casa dos vinte anos.

Em retrospecto, Beckers parece um homem muito afortunado. Depois de nove anos ele se tornou um cidadão americano. Ele deixou a Bayer e, em 1912, fundou a Becker Aniline and Chemical Company. Quando a guerra começou, as empresas alemãs de repente pareciam suspeitas. Como cidadão dos Estados Unidos, no entanto, Beckers não trabalhava mais para uma empresa alemã.

Em vez de parecer uma ameaça, ele se tornou um ativo. No início de 1916, ele defendeu a proteção tarifária contra produtos químicos alemães perante o Comitê de Meios e Condições da Câmara dos EUA. Essa foi a única maneira, disse ele, que os Estados Unidos poderiam superar sua dependência da Alemanha.

Mais tarde naquele ano, em um discurso para os americanos produtores têxteis, ele alertou seus colegas sobre a força industrial alemã. “As mesmas matérias-primas básicas são usadas tanto na fabricação de explosivos quanto de corantes”, observou ele. Esse fato era bem conhecido entre os químicos da época: as fábricas de corantes na Europa haviam se adaptado rapidamente às necessidades da produção de munições. Mesmo na prática da paz, os químicos comerciais – como os engenheiros de minas do Departamento de Minas – tinham involuntariamente criado instrumentos para a guerra. “Nós, químicos americanos”, continuou Beckers, sem mencionar suas origens alemãs, “não somos tão experientes na fabricação de corantes quanto nossos colegas alemães, que vem fabricando esses produtos no último meio século”.

Seis meses após a declaração da guerra, autoridades americanas suspeitas conquistaram o poder legal de agir contra as empresas alemãs. O Congresso aprovou a Lei do Comércio com o Inimigo, e um homem chamado Mitchell Palmer foi nomeado Guardião da Propriedade Estrangeira. O escritório de Palmer começou a receber milhares de relatórios de propriedades controladas pelo inimigo. Fábricas e empresas de propriedade de cidadãos alemães foram apreendidas pelo governo, junto com milhares de valiosas patentes de produtos químicos. O ex-empregador de Beckers, a filial americana da Bayer, foi preso. Muitos de seus funcionários foram presos em Fort Oglethorpe, na Geórgia, um campo de concentração que hoje é praticamente esquecido.

A Primeira Guerra Mundial ajudou a corroer as vantagens da química alemã. Quando as hostilidades na Europa finalmente terminaram em 1918, os Estados Unidos estavam produzindo quatro vezes mais gás venenoso que a Alemanha. Palmer, talvez reconhecendo que seus poderes em tempo de guerra logo diminuiriam, rapidamente se livrou de propriedades confiscadas no valor de milhões de dólares. A Bayer foi vendida em um leilão público nos degraus da empresa.

Quando as hostilidades na Europa finalmente terminaram em 1918, os Estados Unidos estavam produzindo quatro vezes mais gás venenoso que a Alemanha.

No entanto, mesmo em meio ao fervor anti-alemão, William Beckers se esquivou dos problemas graças a seu alinhamento cuidadoso com o esforço de guerra americano. Em 1917, sua empresa se fundiu com outras quatro, a mais importante das quais também foi fundada por um imigrante alemão. O resultado – a National Aniline and Chemical Company – produziu gás mostarda para a CWS. Beckers se aposentou em Nova York em 1919 e viveu outras três décadas como um homem rico.

As tropas
Soldados do Primeiro Regimento de Gás saíram de Washington no dia de Natal de 1917. Seu navio refez a jornada de inverno de James Robb Church, o observador médico cujos relatórios colocaram tudo isso em movimento dois anos antes.

Já era tarde na guerra quando o regimento chegou às linhas de frente em março. O treinamento apressado deles não lhes dera quase nenhuma experiência no emprego de gás venenoso, mas eles carregavam lançadores de morteiros especialmente projetados para a tarefa. A essa altura, as armas químicas haviam se tornado onipresentes, e milhões de soldados de ambos os lados estavam prontos para usar máscaras de gás no menor prazo possível. Mas como os soldados americanos entraram no final da guerra, eles sofreram um número maior de vítimas de gás – um terço de um total de 200 mil – do que qualquer outro país.

O regimento lutou sua maior batalha em abril de 1918, quando as forças alemãs dispararam cerca de 80.000 bombas de gás mostarda em apenas dois dias. As tropas de gás americanas dispararam, liberando milhares de bombas e frascos de fósforo em apoio a ofensivas de infantaria francesas e britânicas. Apesar de tais números, a quantidade de gás usada nos campos de batalha europeus nunca correspondeu à escala de produção de gás em casa.

Três anos antes, na Segunda Batalha de Ypres, a Alemanha usara o gás mostarda. Mas, apesar dos anos de guerra convencional e de gás, as Potências Centrais e os Aliados ainda estavam lutando pelo mesmo pedaço de terra. Alguns chamaram a ofensiva de abril de Quarta Batalha de Ypres.

O armistício
Enquanto as tropas americanas adotaram armas químicas, os químicos americanos foram adotados nas forças armadas. A produção e a pesquisa de produtos químicos haviam sido intensificadas enormemente e os líderes militares queriam centralizar os diversos esforços do Ministério de Minas. O diretor Manning argumentou que os químicos civis trabalhavam melhor sob o controle civil, mas depois de uma longa batalha administrativa, o presidente Wilson acabou decidindo o contrário. Em junho de 1918, 1.700 químicos americanos foram transferidos para o recém-criado Serviço de Guerra Química do Departamento do Exército. Eles se ofereceram para ajudar os militares, mas acabaram se tornando parte disso.

O fim da guerra veio cinco meses depois, com um gemido em vez de um estrondo. Como disse um capelão do Primeiro Regimento de Gás: “Por muito tempo foi difícil não sentir que estávamos simplesmente passando por uma trégua entre as lutas”.

O futuro da CWS estava em dúvida. O comandante do regimento escreveu aos seus homens: “Se o Serviço de Guerra Química será continuado em paz, ainda não se sabe”. Não importava, ele queria que eles soubessem que o trabalho deles seria lembrado. “Será a estrela-guia para esse trabalho em qualquer guerra futura, caso, infelizmente, nosso país tenha que entrar novamente em uma.”

Alguns cientistas em Washington voltaram para suas universidades e corporações. Outros foram à procura de novos trabalhos. Apenas um pequeno grupo permaneceu a serviço do governo, e eles esperaram para ver se a CWS seria dissolvida. As armas que a CWS gastou anos desenvolvendo eram rotineiramente atacadas na esfera pública como cruéis e antiéticas.

Em 1919, o general encarregado do CWS reuniu um grupo de seus ex-oficiais. Reconhecendo que a sua profissão e talvez a dignidade do trabalho que tinham concluído estava agora em jogo, eles decidiram lançar uma campanha publicitária nacional. “Ao contrário da opinião geral”, observou um importante químico, Charles Herty, durante um discurso, “a guerra de gás não se mostrou desumana”. Todas as armas são, por definição, destrutivas, argumentou ele – mas as propostas para proibir armas ou explosivos nunca são seriamente discutidas. “A Liga das Nações se encontrou. Não concordou que este novo método de guerra deveria ser abolido e, por isso, estamos hoje diante do fato de que esse novo método será desenvolvido, e esse é o significado de nosso Serviço de Guerra Química para esta nação ”.

Embora o sucesso da campanha fosse misto, o CWS nunca foi desfeito – simplesmente adaptado a novas necessidades militares. Armas químicas foram denunciadas e banidas por muitos tratados depois da Primeira Guerra Mundial. Mas a CWS em tempos de paz lançou uma série de projetos estranhos de pesquisa destinados a melhorar sua reputação, muitos dos quais usavam os mesmos produtos químicos tóxicos sintetizados durante a guerra. Pesquisadores tentaram produzir tinta repelente de cracas para as laterais dos navios. O CWS construiu um dispositivo de defesa estranho para os bancos que liberaria gás mostarda quando um cofre era forçado a abrir. Em 1924, a CWS até tentou curar a gripe do presidente Calvin Coolidge, selando-o em uma câmara com baixas doses de gás cloro. “Uma das maneiras pelas quais os estragos da guerra vão ser compensados”, disse o general encarregado da CWS civil, “é fazer uso na paz do conhecimento daqueles compostos venenosos obtidos na guerra”.

Até hoje, dois dos venenos de guerra mais conhecidos – o fosgênio e o gás cloro – são usados ​​na agricultura e nos sistemas de água, respectivamente.

A mais duradoura das contribuições civis da CWS foi o desenvolvimento de novos pesticidas. Na década de 1920, os pesquisadores da CWS testaram a utilidade do gás lacrimogêneo no extermínio de ratos e carunchos. Nas décadas que se seguiram, os pesquisadores da CWS reaproveitaram aviões militares e pulverizadores para pesquisa de pesticidas. Depois que a agência mudou seu nome em 1946 para o Chemical Corps – que continua sendo uma ramificação do Exército dos EUA -, antigos membros da CWS até ajudaram a popularizar o DDT.

Até hoje, dois dos venenos de guerra mais conhecidos – o fosgênio e o gás cloro – são usados ​​na agricultura e nos sistemas de água, respectivamente. Os agricultores prosperaram com os mesmos tipos de produtos químicos que causaram o sofrimento de tantos soldados, e o gás cloro é o desinfetante de água mais usado nos Estados Unidos.

A ciência transforma a guerra e a guerra transforma a ciência. Armas químicas são infames pelo sofrimento que causaram nas linhas de frente da Primeira Guerra Mundial – mas seus efeitos ultrapassaram as trincheiras em laboratórios americanos e fábricas alemãs, e até mesmo em nossas vidas hoje.

Texto escrito por Daniel A. Gross, na Distillation Magazine.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do original ‘Chemical Warfare: From the European Battlefield to the American Laboratory’ com a autorização dos detentores dos direitos. Revisado por: Natanna Antunes e Kelly Vargas.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]

Sugestão de leitura:
O cloro e a Primeira Guerra Mundial

Fios sintéticos

meia de nylon antiga
Uma trabalhadora inspeciona uma meia de nylon em Malmö, na Suécia, em 1954. A introdução de novos tecidos sintéticos após a Segunda Guerra Mundial mudou os guarda-roupas e os estilos de vida das pessoas.[Erik Liljeroth/Nordiska Museet]

As fibras sintéticas não apenas mudaram a indústria da moda; elas mudaram a forma como as mulheres viviam suas vidas.

Em 27 de outubro de 1938, 11 anos de pesquisa envolvendo mais de 230 cientistas e técnicos da DuPont culminaram no anúncio da primeira fibra totalmente artificial do mundo. O braço de publicidade da empresa anunciou que a fibra era derivada de carvão, água e ar. Foi a teoria trazida à vida: uma seda artificial fiada e extraída de cadeias moleculares de comprimento e peso molecular quase infinito. Mal seis meses depois, o nylon, como a fibra passou a ser chamada, ganhou destaque na Feira Mundial de 1939, onde o Wonder World of Chemistry da DuPont apresentou suas últimas inovações para cerca de 1,5 milhão de visitantes.

Em contraste com o rayon semi-sintético, que é feito de fibras vegetais quimicamente modificadas, como o algodão, o nylon possui durabilidade e um suprimento estável de matérias-primas que os químicos podem controlar pela qualidade. A fibra também parecia adequada para uma vasta gama de aplicações do dia-a-dia, de tecidos e colchas a fios, redes de pesca a cerdas de escova. Mas a DuPont escolheu com sucesso as meias como veículo para a estreia mundial do nylon. Enquanto as modelos do Wonder World of Chemistry esticavam e torciam as meias para demonstrar a força e o brilho da nova fibra, nasceu uma sensação na moda.

inspeção de fios de nylon
Um homem agacha-se sob uma máquina de irradiação de fios na fábrica de nylon da DuPont em Seaford, Delaware, ca. Década de 1940 [Fonte: Museu e biblioteca de Hagley]

Em 1949, as caras meias de seda caíram em desuso, e as meias feitas de nylon e um conjunto crescente de fibras sintéticas dominaram o mercado. Esses produtos sintéticos, que posteriormente passaram a incluir acrílico, poliéster e elastano, deram origem a um mercado de moda de massa definida por conjuntos de suéteres e roupas que não precisam serem passadas. No entanto, o surpreendente sucesso do nylon e de suas contrapartes sintéticas obscurece a improvável aliança das indústrias químicas e da moda que apoiaram a revolução da moda do pós-guerra. Essa aliança pavimentou o caminho para que os materiais sintéticos substituíssem e até melhorassem os materiais tradicionais, como seda, algodão e lã, e finalmente se tornassem parte natural da vida moderna.

A Pure Science Division da DuPont, berço do nylon, foi idealizada pelo vice-presidente da empresa, Charles Stine, que no final dos anos 20 convenceu o conselho da DuPont a se afastar da pesquisa com claro potencial de lucro e a alocar US$ 250.000 para pesquisa pura. Tal abordagem não era desconhecida – tanto os laboratórios de pesquisa operados pela General Electric quanto pela Bell Telephone -, mas era raro, assim como a amplitude sugerida por Stine à pesquisa especulativa. Ele cortejou Wallace Carothers e outros químicos a saírem de postos acadêmicos e irem para o laboratório com a oferta de amplo financiamento e pessoal.

Na DuPont, Carothers estava livre para explorar a polêmica teoria de Hermann Staudinger de que os polímeros consistiam de cadeias de moléculas de comprimento quase ilimitado. Depois de testar várias combinações durante o início da década de 1930, Carothers e sua equipe de pesquisa concentraram-se em poliamidas – longas cadeias de carbono, oxigênio, nitrogênio e hidrogênio que podiam ser giradas e desenhadas para produzir fibras elásticas flexíveis.

história do nylon na dupont
Imagens da fábrica de produção de nylon da DuPont em Wilmington, Delaware, 1938 (no sentido horário a partir do canto superior esquerdo). Mike McCall coloca chips de nylon em um funil; os chips serão derretidos, medidos e filtrados antes de serem transformados em filamentos. Um trabalhador não identificado supervisiona a operação de equipamento de tecelagem, que torce fibras de polímero em linhas. Violet Grenda inspeciona meadas de fio de nylon. [Fonte:Joseph X. Coleção Labovsky, Instituto de História da Ciência]

Em 1936, o laboratório de Carothers fiou poliamidas por até 10 minutos, um passo crítico em direção a uma fibra viável. Na medida em que a equipe continuou a desenvolver maquinário e equipamentos para refinar o processo, o grupo de marketing da DuPont começou a explorar aplicações para a nova fibra. Na época, as importações japonesas respondiam por 90% do suprimento de seda crua dos Estados Unidos, três quartos das quais eram usadas ​​para fabricar os mais de 1,5 milhão de pares de meias compradas diariamente pelos americanos. Com a industrialização e a militarização do Japão intensificando tensões políticas de longa data, um substituto interno para a fibra de seda parecia cada vez mais atraente.

A DuPont começou a prototipar meias de nylon em 1938, parte de seu esforço para vender o potencial do nylon aos fabricantes que acabariam produzindo as meias. Para esse fim, a empresa construiu novas máquinas e desenvolveu técnicas de costura especificamente para nylon. Uma dessas inovações foi esticar as meias recém-tricotadas sobre as formas em forma de perna para evitar o encolhimento, pois as meias eram vaporizadas para aquecer e ganhar sua forma e tamanho. Essas meias experimentais, tricotadas em fevereiro de 1939, estrearam pela primeira vez na Exposição Internacional de São Francisco e chamaram a atenção para a Feira Mundial de Nova York no final daquele ano. Logo depois, revistas de moda e pesquisas com consumidores documentaram um entusiasmo generalizado pela firmeza, força e ajuste suave e sem rugas, e o nylon rapidamente se tornou um nome familiar. Na primeira venda pública de meias de nylon em 24 de outubro de 1939, em Wilmington, Delaware, o fornecimento de 4.000 pares esgotou em apenas três horas. A demanda só aumentou depois que as meias de nylon se tornaram disponíveis em todo o país em maio de 1940. Mas em 11 de fevereiro de 1942, as meias de nylon desapareceram do mercado, pois a DuPont direcionava toda a produção de nylon para as necessidades militares, como pára-quedas.

Em 1945, após o término da Segunda Guerra Mundial, a DuPont voltou seu foco para clientes civis, prevendo produção suficiente de nylon para tricotar 360 milhões de pares de meias por ano. (Atrasos técnicos prejudicaram a produção em volume, limitando o número de meias a chegar ao mercado em 1946.) A atenção renovada da DuPont às aplicações de consumo levou à criação de uma verdadeira família de fibras, incluindo poliéster (1946), acrílico (1955) e elastano (1958), todas com nomes de marca acessíveis como Dacron (poliéster), Orlon (acrílico) e Lycra (elastano).

modelo promove meias de nylon
Uma foto promocional da DuPont de 1969 da jaqueta Qiana do estilista Louis Féraud. Qiana, um material de nylon sedoso, era responsável pela maior parte do ousado vestuário de discoteca dos anos 70. [Fonte: Museu e biblioteca de Hagley]

Circunstâncias econômicas, sociais e culturais impulsionaram a rápida adoção e aceitação do nylon e o subsequente acolhimento das fibras sintéticas que se seguiram. Para os fabricantes, a escassez de matérias-primas tradicionais impulsionadas pelo boom do pós-guerra aumentou o apelo de alternativas sintéticas derivadas de gás e petróleo abundantes. Para os designers de moda, a durabilidade, a lavabilidade e a facilidade de cuidar do nylon e de outras fibras artificiais abriram possibilidades criativas que, em última análise, significaram mais roupas e acessórios para a indústria do vestuário fabricar e vender. E para os consumidores, as características únicas do nylon e de outros produtos sintéticos levaram muitos a adotarem essas fibras não apenas como substitutos artificiais das substâncias naturais, mas também como novos materiais.

Durante os anos 50, os tecidos sintéticos ajudaram a satisfazer o apetite do público por novas opções de roupas, após anos de depressão econômica e guerra. Esses materiais foram transformados em meias e anáguas, vestidos de noiva, camisas sociais e calças de esqui. As mulheres eram o principal mercado para essas roupas, que geralmente apresentavam novos detalhes de design, como vincos permanentes, pregas ajustadas pelo calor, resistência a rugas e solidez da cor. Essas roupas trouxeram uma tendência de guarda-roupas e roupas de banho, valorizadas por sua facilidade e conveniência. Tais características de desempenho atraíram especialmente as mulheres mais jovens que, em pesquisas de opinião da DuPont, lamentaram o trabalho diário de engomar e adotaram um estilo de vida mais despreocupado e moderno. Não é por acaso que, entre 1950 e 1956, as vendas de máquinas de lavar nos Estados Unidos mais do que triplicaram. Tais qualidades poupadoras de mão de obra estimularam ainda mais a aceitação pelos consumidores das fibras sintéticas e da própria química, que forneciam cada vez mais o que a natureza não podia.

Uma vez que os fabricantes e consumidores adotaram os sintéticos, não havia como voltar atrás. A revolução que começou com o nylon deu origem a novas silhuetas, texturas e cores impossíveis de criar com fibras naturais e continuou a moldar os gostos dos consumidores nas próximas décadas.

Texto escrito por Hillary S. Kativa, coradora da coleção de fotografias e vídeos do ‘Science History Institute’.

Traduzido por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) do texto ‘Synthetic Threads’ originalmente publicado na revista Distillation Magazine. A tradução foi gentilmente autorizada pelos detentores dos direitos. Revisão feita por: Larissa Gomes e Kelly Vargas.

Original (English) content from Science History Institute (https://www.sciencehistory.org/). Content translated with permission, but portuguese text not reviewed by the original author. Please do not distribute beyond this site without permission. [[Conteúdo original (inglês) do Science History Institute (https://www.sciencehistory.org/) . Conteúdo traduzido com permissão, mas o texto em português não foi revisado pelo autor do original. Por favor, não distribua o conteúdo sem permissão.]]