Categoria: Físico-química

Absorção de umidade pelo cloreto de cálcio

cristais brancos sobre vidro com pequenas gotas
No mercado é fácil encontrar produtos que absorvem a umidade do ambiente para minimizar o aparecimento de mofo. Uma parte desses produtos contém em sua composição do cloreto de cálcio, um sal que absorve facilmente a umidade do ar (é dito higroscópico).

Veja no vídeo abaixo como essa absorção da umidade do ar é rápida. O vídeo é um timelapse – uma sequência de centenas de fotografias – de um intervalo de 1 hora e 45 minutos de exposição do cloreto de cálcio ao ar. Rapidamente o sal começa a acumular água que vai sendo absorvida do ambiente.

O cloreto de cálcio é proposto também como uma forma de controlar a poeira em estradas de terra. A facilidade de absorção da umidade do ar faria como que a superfície ficasse úmida diminuindo o problema da poeira.

A capacidade de absorção de água pelo cloreto de cálcio é tamanha que poderia chegar a 6 vezes a sua massa quando em 85% de umidade relativa do ar.

Dicas:
– use o removedor de umidade do ambiente (para diminuir o mofo) apenas em locais restritos, como em armários ou gavetas; ou o produto absorverá água da atmosfera até saturar.
– deixe o material longe do alcance de crianças e animais; e em caso de ingestão procure imediatamente atendimento médico.
– evite o contato do cloreto de cálcio com partes metálicas pois pode levar à corrosão (mesmo sendo o líquido resultante após a absorção da umidade, pois este ainda apresenta o sal dissolvido)

Veja também
Hidróxido de sódio absorvendo água (vídeo em timelapse)

Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle.

A vodka e a química

professor martyn com garrafas de vodka em volta
O desafio para falar sobre a relação da Vodka com a química é fácil! Pelo menos é o que acha o Professor Sir Martyn Poliakoff.

Martyn conta que em algumas partes da Rússia Dmitri Mendeleiev é mais famoso pelo seu envolvimento na padronização da quantidade de álcool na vodka do que pela ‘paternidade’ da tabela periódica.

A vodka também fez parte de um estudo publicado por Sasha Novitskiy, um dos integrantes da equipe de pesquisa de Martyn, que demonstrou as semelhanças entre o comportamento físico-químico da vodka quando comparado com misturas de álcool e água.

Vídeo com legendas em português. Ative as legendas pelo botão CC que aparecerá no vídeo.

Veja também
– Química do gin e tônica

Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle.

E beba com moderação.

Lata de refrigerante em nitrogênio líquido

coca cola em nitrogênio líquido
Bolsistas e novatos no trabalho em um laboratório de pesquisa científica tem o péssimo hábito de achar uma ‘boa ideia’ o uso de nitrogênio líquido para tentar gelar uma lata com refrigerante ou cerveja.

O nitrogênio líquido está em uma temperatura normalmente abaixo de -196°C! E os jênios acham que isso seria uma boa forma de gelar rapidamente uma lata de refrigerante. Não é!

O nitrogênio causará um resfriamento muito rápido da água presente no líquido dentro da lata, resultando em uma expansão do gelo e consequente rompimento do alumínio da lata. O efeito pode ser tão forte a ponto de explodir e danificar o frasco que contém o nitrogênio líquido. Prejuízo na certa.

A equipe do Periodic Videos demonstrou o que acontece com latas de Coca Cola e uma garrafa PET de Pepsi. O Professor Sir Martyn Poliakoff também explica também sobre o CO2 sólido e as peculiares propriedades do gelo quando resfriados em nitrogênio.

E uma curiosidade! O Professor Sir Martyn Poliakoff diz que NUNCA experimentou Coca Cola ou Pepsi! Deve ser uma raridade. Mas posso garantir que o Professor Martyn já experimentou guaraná! Eu sei disso porque ofereci um pouco de guaraná quando ele veio visitar o Brasil em 2011. Ele não gostou e disse que era muito doce! 🙂

O vídeo possui legendas em português. Ative pelo botão CC que aparecerá no vídeo.

Veja também
– Por que o gelo racha na água?
– Latas de alumínio em ácido e base

Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle.

Palha de aço em vinagre – timelapse

reação de vinagre e ferro
A reação entre o ferro da palha de aço e o vinagre é relativamente lenta, então resolvemos comprimir 1 hora e 40 minutos de reação em um vídeo com 30 segundos de duração (usando a técnica de timelapse).
Veja o resultado…

As bolhas que aparece durante a reação são de hidrogênio, que é produzido lentamente e em pequena quantidade.
O vinagre comum possui uma baixa concentração de ácido acético (de 3 a 9%) e a reação com o ferro pode resultar em no aparecimento de um pouco de acetato de ferro(II e III) em solução.
A cor avermelhada da parte superior aparece por causa do maior contato da palha de aço com o ar (oxigênio) resultando em óxidos de ferro.

Movimento perpétuo com refrigerante e cerveja?!

Primeiro assista o vídeo abaixo.

E aí?! Funciona?
Resposta simples e direta. Não!
Este sistema é conhecido como ‘Frasco de Robert Boyle’ ou então ‘Bacia capilar’. Que pela concepção original deveria ser uma ‘máquina’ de movimento perpétuo, causado pelo fluxo de líquido por meio do tubo inferior que se torna cada vez mais fino. O tubo quase capilar causaria uma subida do líquido pelo efeito da capilaridade, caindo então na fonte original.
Um dos motivos da impossibilidade é que um líquido tende a permanecer no mesmo nível, independente da forma do frasco. Dada aqui a ressalva para o caso de um líquido estático.
Mas, e o efeito da subida de um líquido ascensão capilar? Nesta suposição o mesmo princípio da subida do líquido pelo capilar impediria a sua saída pela ponta superior. Inutilizando o funcionamento do suposto movimento perpétuo.
No vídeo o refrigerante e a cerveja parecem funcionar muito bem! O que está acontecendo?
A primeira tentação é tentar explicar o movimento do refrigerante ou cerveja pela geração de bolhas dentro do tubo. Esse borbulhamento poderia ajudar no fluxo do líquido pelo sistema. Mesmo que isso funcionasse, o feito terminaria rapidamente após saída do gás do refrigerante ou cerveja. Bem pouco para um sistema que deseja ser perpétuo.
Na verdade o vídeo acima foi fraudado! O fluxo de líquido é ajudado por um pequeno motor escondido. Observe que na imagem abaixo, por volta de 2 minutos de vídeo, é possível visualizar o fio que alimenta o sistema de bombeamento.
falso sistema de movimento perpétuo

Veja no vídeo abaixo uma tentativa de repetir o experimento.

Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) – Universidade Federal do Pampa – Bagé.

Por que o gelo racha na água?

gelo rachado apos imerso em nitrogenio
Brady Haran, o vídeo-jornalista da série Periodic Videos, ficou curioso em saber o motivo do gelo algumas vezes rachar quando entra em contato com água.
Nada melhor do que perguntar ao Professor Martyn Poliakoff, químico na Universidade de Nottingham.
E a solução para o enigma é relativamente simples. Quando o gelo estiver bastante frio e for colocado em um líquido, acontecerá uma expansão mais rápida do gelo que está em contato com a água, enquanto o interior do gelo ainda permanece contraído. Essa diferença de movimentos dentro do gelo acaba resultando em rachaduras.
Mas e se você jogar o gelo em nitrogênio líquido? Que é um líquido muito mais frio do que o gelo, o que acontece?
Desta vez ocorre um efeito contrário; com contração rápida da parte externa do gelo, gerando tensões internas e rachaduras.

O vídeo possui legendas em português. Ative as legendas no vídeo clicando na pequena ‘engrenagem’ que aparece quando você inicia o vídeo abaixo!

Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle ( luisbrudna@gmail.com ) – Universidade Federal do Pampa – Bagé.