Tag: luz

Espectroscópio particular de Raman

senhor usando espectroscopio de raman
Professor Sir Martyn Poliakoff, da Universidade de Nottingham, mostra o espectroscópio particular do famoso cientista indiano Chandrasekhara Venkata Raman.
Raman – melhor chamar de Raman, porque poucos conseguem lembrar ou pronunciar Chandrasekhara Venkata – é conhecido por uma técnica de análise muito utilizada na química; a espectroscopia Raman.

O espectroscópio é uma versão de bolso que Raman usava para observar casualmente materiais que encontrava no seu cotidiano.

A espectroscopia de Raman é um método de análise de materiais que permite obter informações químicas sem necessitar efetuar uma destruição da amostra.

Vídeo com legendas em português. Use o botão CC que aparecerá no vídeo para selecionar a opção de legenda em português.

Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle.

Famosas pinturas ajudam a interpretar a atmosfera terrestre no passado

Em março de 2014 foram publicados os resultados de uma pesquisa, na revista “Atmospheric Chemistry and Physics”, que detalha o estudo feito por cientistas gregos e alemães que comprovaram que pinturas feitas por pintores famosos como J. M. W. Turner, ajudaram a comprovar o passado da atmosfera terrestre.

Em 10 de abril de 1815 o vulcão Tambora, na Indonésia, produziu a maior erupção conhecida no planeta nos últimos 10 mil anos. A erupção produziu efeitos climáticos globais e matou mais de 10 mil pessoas diretamente e mais de 60 mil devido à fome e doença durante o “inverno vulcânico” que se seguiu. Logo após a erupção, foram percebidas mudanças de cores do céu, pois, as cinzas vulcânicas e os gases liberados na atmosfera atravessaram o mundo, e como partículas aerossóis causam um espalhamento da luz do sol, elas produziram um pôr do sol mais vermelho e laranja na Europa, perdurando esse efeito por até três anos após a erupção.

J.M.W Turner um dos artistas mais consagrados da modernidade da pintura, em função dos seus estudos sobre cor e luz, pintou incríveis imagens na época. Agora, suas pinturas são usadas para resgatar informações sobre o passado da atmosfera.

pintura a oleo de w turner
Pintura de Turner onde nota-se os níveis de poluição na época.

Christos Zerefos, professor de física atmosférica na Academia de Atenas, na Grécia, analisou centenas de fotografias digitais de alta qualidade de pinturas do sol feitas entre 1500 e 2000 (período que ocorreram 50 grandes erupções vulcânicas). Sua pesquisa tinha como objetivo geral descobrir se as quantidades relativas de vermelho e verde ao longo do horizonte de cada pintura poderiam fornecer informações sobre a quantidade de aerossóis na atmosfera. “Descobrimos que a razão vermelho e verde medidos em o pôr do sol de pinturas de grandes mestres relacionam-se bem com a quantidade de aerossóis vulcânicos na atmosfera, independentemente dos pintores e da escola de pintura”, diz Zerefos.

Céus mais poluídos por cinzas vulcânicas espalham mais a luz do Sol, por isso aparecem mais vermelhos. Efeitos semelhantes são vistos em nuvens de poeiras no deserto e aerossóis fabricados pelo homem. O ar com maior quantidade de aerossóis tem uma “profundidade óptica de aerossol” superior, um parâmetro calculado pela equipe de pesquisa usando as proporções de vermelho e verde nas pinturas. Eles então compararam estes valores com os obtidos através de padrões independentes (como dados de explosividade vulcânica) e encontraram boa concordância.

Para assegurar essa ideia, os pesquisadores pediram a um colorista famoso para pintar o pôr do sol durante e depois da passagem de nuvem de poeira sobre a ilha de Hydra, em junho de 2010. Os cientistas compararam as medidas de profundidade óptica de aerossol feita por instrumentos modernos com aqueles estimados razão vermelho/verde das pinturas, e descobriram que todos os dados correspondiam.

Profundidade óptica de aerossol pode ser usada diretamente em modelos climáticos, assim que tiver estimativas para este parâmetro ajudará os pesquisadores a entender como os aerossóis têm afetado o clima da Terra no passado. Este, por sua vez, pode ajudar a melhorar as previsões de mudanças climáticas futuras. “Queríamos oferecer formas alternativas de exploração da informação ambiental na atmosfera passado em lugares onde, e em séculos quando, medições instrumentais não estavam disponíveis”, conclui Zerefos.

Texto escrito por Bruna Lauermann.

Fonte: Astrobiology Magazine

Uma mão que brilha!

mão com luva e líquido que brilha no escuro
O líquido extraído de pulseiras luminosas de várias cores foram utilizadas para criar este efeito.
O brilho mais intenso foi obtido pela iluminação por luz negra (ultravioleta (UV)).
A mão foi protegida com uma luva para evitar queimaduras na pele, que podem ocorrer devido à possível presença de certa quantidade de água oxigenada (peróxido de hidrogênio) na composição deste tipo de pulseira luminosa.
Por ser um produto adquirido avulso, não é possível saber exatamente a composição química do material.

Para saber mais sobre a química, e alguns experimentos, veja:
Quimiluminescência orgânica: alguns experimentos de demonstração para a sala de aula

Licença Creative Commons
This obra by http://www.emsintese.com.br/2013/uma-mao-que-brilha/ is licensed under a Creative Commons Atribuição-Uso Não-Comercial-Partilha nos termos da mesma licença 3.0 Unported License.

Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle.

Filtro solar

química do protetor solar
Estamos em junho, em pleno inverno, qual é a razão de falar sobre um filtro solar? Se você mora no norte do Brasil ou está viajando para uma região na qual atualmente é verão, precisará de um filtro solar. Além disso, em certos casos é indicado utilizar um filtro solar mesmo durante o inverno. Um dermatologista pode te ajudar a decidir sobre a necessidade e frequência de uso.

Durante a viagem para a Austrália o Professor Martyn aproveitou um pouco da famosa praia de Bondi, e explicou um pouco sobre o funcionamento de um filtro solar.

A proteção para filtrar parte da luz ultravioleta (UV) ocorre pelas características químicas e físicas do produto. Na proteção física os produtos costumam ter em sua composição óxido de zinco e/ou óxido de titânio que refletem a luz UV, impedindo que danifique a pele.

Veja mais informações no vídeo.

Vídeo possui legenda em português. Para ativar a visualização clique no play e após clique no botão CC que aparecerá no vídeo.

Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle.

Diamante amarelo

Mrtyn Poliakoff em seu escritório
Recentemente os sites de notícias divulgaram sobre o leilão de um diamante amarelo, arrematado por aproximadamente 10,9 milhões de dólares.

Como um diamante pode ser amarelo? Normalmente estamos acostumados com diamantes sem cor. O que pode causar tal efeito? E qual é a raridade da gema?

Martyn Poliakoff, químico da Universidade de Nottingham, explica que a coloração dos diamantes pode variar dependendo do tipo de contaminante presente na estrutura da gema, que normalmente é composta apenas de átomos de carbono.

No caso do diamante amarelo houve uma inclusão de pequeníssimas quantidades de nitrogênio na estrutura química do diamante, permitindo que um diferente tom de cor fosse percebido.

Vídeo possui legenda em português. Para ativar a visualização clique no play e após clique no botão CC que aparecerá no vídeo.

Texto escrito por Prof. Dr. Luís Roberto Brudna Holzle.

Aquele brilho

radiação e brilho azul
Popular em filmes, o brilho característico um reator nuclear, ou em materiais radioativos, possui uma explicação.
Parte deste belo e hipnótico brilho pode ser explicado pelo Efeito Tcherenkov, que manifesta-se quando uma partícula carregada eletricamente passa por um meio isolante em uma velocidade superior à da luz para este meio, emitindo uma radiação eletromagnética que pode estar na faixa do visível.
É bom lembrar, que a velocidade da luz no vácuo é a máxima, e que em meios diferentes do vácuo a velocidade da luz pode ser menor. Desta forma existe a possibilidade de que uma partícula carregada eletricamente possa deslocar-se em uma velocidade superior à da luz para aquele meio.
Mais informações na Wikipedia, http://pt.wikipedia.org/wiki/Efeito_Tcherenkov.

A imagem acima foi registrada no Argonne National Laboratory, centro de pesquisas científicas do Departamento de Energia dos EUA, como parte de investigações no aperfeiçoamento de processos em reaproveitamento do material utilizado em um reator nuclear.

Em um reator nuclear o urânio perde eficiência ao longo do tempo em que é utilizado na usina, e precisa ser reposto por material novo, resultando em um indesejado resíduo radioativo. E é neste ponto de aprimoramento da recuperação e reutilização destes resíduos que trabalha a equipe de pesquisadores do Argonne National Laboratory

O canal do Argonne no YouTube deixa disponível um vídeo (em inglês) sobre as pesquisas que realizam nesta área.

Aos 3m35s do vídeo acima, eles comentam que o processo de manipulação do material radioativo é feito com proteção de um vidro que contém chumbo, que também é descrito em um vídeo sobre o chumbo (realizado pelo Periodic Videos).

Imagem sob licença Creative Commons, via Argonne National Laboratory(Flickr).